SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Gabriella Professor 1972 ) "

Sökning: WFRF:(Andersson Gabriella Professor 1972 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • George, Sebastian, 1990- (författare)
  • Amorphous Magnetic Materials : A Versatile Foundation for Tomorrow’s Applications
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amorphous magnetic materials exhibit a number of key differentiating properties with respect to crystalline magnets. In some cases, the differences may simply be in the values of macroscopic properties such as saturation magnetization, coercivity, Curie temperature, and electrical conductivity. Other cases are more fundamental, such as the possibility for many amorphous alloys to be produced with nearly arbitrary composition, something that is not always possible in crystal structures that may only be stable for certain specific compositions.Fundamentally, these properties arise due to the disordered arrangement of atoms in amorphous materials. However, this structure is challenging to probe and characterize, either experimentally or theoretically. A significant contribution of this thesis is the development of a new approach for studying the local atomic structure of amorphous materials, specifically amorphous SmCo and FeZr alloys. The strategy combines extended x-ray absorption spectroscopy (EXAFS) measurements with stochastic quenching (SQ) simulations in a way that provides more information than either method can offer alone. Additionally, this approach offers the potential for identifying any shortcomings in the theoretical models obtained via SQ.Having an accurate model of the atomic arrangement is not, however, a prerequisite for developing technical applications of amorphous magnetic materials. For that, it is sufficient to quantify those macroscopic properties that are relevant for a given application. Such is the value of the magnetic characterization of amorphous TbCo and CoFeZr alloy thin films presented here. Both investigations used methods such as vibrating sample magnetometry (VSM) and magneto-optic Kerr effect (MOKE) measurements to highlight the high tunability of the magnetic properties in these materials, which can be achieved simply by changing the chemical composition.The final portion of this thesis examines what can be achieved by combining amorphous SmCo and TbCo alloys together in bilayer structures. This is a step away from the alloy characterization studies, as it focuses on how new properties can be realized when multiple materials are brought together. MOKE measurements were used to identify the conditions under which the bilayers spontaneously become magnetized parallel to the film plane versus when the TbCo magnetization begins to tilt out of the plane. Further investigation combining x-ray circular magnetic dichroism (XMCD) measurements and micromagnetic simulations provided a depth-resolved model of the magnetization throughout the bilayers in the presence of a broad range of external field strengths and directions. These models also showed that the local magnetization just above and just below the SmCo/TbCo interface can be aligned either parallel or antiparallel to one another simply by varying the TbCo composition. This discovery offers a novel method for controlling the magnetic behavior in these materials, and may well be useful for all-optical switching or spintronics applications where amorphous TbCo alloys have already drawn attention.
  •  
2.
  • Bylin, Johan (författare)
  • The interaction of hydrogen with metallic glass
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Combining theoretical ab initio calculations with high-purity thin film sample synthesis and in situ measurements is a compelling way to bridge the gap in our understanding concerning hydrogen in metallic glasses, which is the primary work of this dissertation thesis. The main emphasis has been on how hydrogen affects the structure of metallic glasses, and how those changes influence not only the electronic properties of the amorphous metals but also their thermal stability.    The real-space correlations in the form of the pair distribution functions in thin metallic films have primarily only been accessible through synchrotron radiation. An effective methodological procedure using laboratory-based x-ray sources is here brought forth, which, for the first time, can produce accessible and accurate pair distribution functions from thin films down to a thickness of 80 nm.    The underpinning mechanisms behind the hydrogen-induced volume expansion of metallic glasses in the form of the dipole force tensor and an elastic hydrogen-hydrogen interaction were examined using in situ neutron reflectometry and first-principles calculations of expanding V80Zr20 amorphous structures. The dipole force tensor was concluded to be similar in magnitude to a mole-fraction-weighted sum of the ones found in hydrogen-contained vanadium and zirconium crystals, and the theoretical calculations demonstrated that it and the interaction energy varies with hydrogen concentration.   The electronic structure of the metallic glass V80Zr20 was determined via hard x-ray photoemission spectrometry and confirmed by first-principles calculations to be modified by the presence of hydrogen, in which a collection of s-d hybridized states 7 eV below the Fermi level was formed. The changes closer to the Fermi level, together with the volume expansion, were via experiments and ab initio calculations established to cause a parabolic change in resistance and a strong wavelength dependence on the optical transmission.   The thermal stability of amorphous VxZr1-x metals, investigated via ab initio calculations of the thermodynamic driving force towards crystallization, was found to affirm the observed hydrogen-induced enhancement in thermal stability. 
  •  
3.
  • Ghorai, Sagar (författare)
  • Direct and indirect magnetocaloric properties of first- and second-order phase transition materials
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The energy-efficient and environmentally friendly alternative cooling technology based on the magnetocaloric effect (MCE) is discussed in this thesis. The thesis has two major parts, one devoted to material characterization and the other to instrument development. Different magnetic oxides and intermetallic compounds with second-order and first-order magnetic transitions, respectively, were studied with the aim of finding materials suitable for magnetic refrigeration. For the application of the MCE, a high value of the isothermal entropy changes and the relative cooling power (RCP), along with minimal temperature hysteresis are required. The temperature hysteresis is negligible for all studied second-order compounds, while an almost ten times higher value of the isothermal entropy change has been observed for the first-order compounds. The highest value of isothermal entropy change (20 J/kgK at 2 T applied magnetic field) has been observed for the MnNiSi-type compounds exhibiting magneto-structural phase transitions, while the largest value of the RCP (176 J/kg at 2 T applied magnetic field) has been observed for the Fe2P-type compounds exhibiting magneto-elastic phase transitions.For the characterization of magnetocaloric properties, one important parameter is the adiabatic temperature change, which is often not reported in literature owing to the lack of experimental setups for direct measurements of the magnetocaloric effect. This thesis also includes the development of a setup for the direct measurement of the adiabatic temperature change upon a change in a magnetic field.  
  •  
4.
  • Vantaraki, Christina (författare)
  • Designing order with long-range interactions in mesoscopic magnetic chains
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis investigates how the low-energy magnetic configuration of a mesoscopic chain can be tuned by geometrical modifications. The magnetic arrays made by single-domain stadium shaped elements positioned side-by-side were fabricated by patterning into a sputtered ferromagnetic thin film. The thickness of the thin film was determined by X-ray reflectivity measurements while Scanning Electron Microscopy and Atomic Force Microscopy were used to characterize the surface morphology of the nanostructures. Magnetic Force Microscopy was used to image the magnetic configuration of mesoscopic chains after applying a thermal annealing protocol and a field demagnetization protocol. By gradually modifying the geometrical arrangement of the half of mesospins, the magnetic chain is found to exhibit a transition from antiferromagnetic to dimer antiferromagnetic configuration after the thermal annealing treatment. After the field demagnetization protocol, both antiferromagnetic and dimer antiferromagnetic domains are formed. Micromagnetic simulations were performed to investigate how the interaction between the mesospins is affected by the geometrical modifications and a qualitative method was invented to examine the theoretical low-energy state of the magnetic chains. It is found that the low-energy magnetic configuration of the mesoscopic arrays is formed after the competition and collaboration of different interactions and is the one observed after the thermal annealing treatment. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy