SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Klas J.) "

Sökning: WFRF:(Andersson Klas J.)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
6.
  • H. Moud, Pouya, et al. (författare)
  • Biomass pyrolysis gas conditioning over an iron-based catalyst for mild deoxygenation and hydrogen production
  • 2017
  • Ingår i: Fuel. - : Elsevier BV. - 0016-2361 .- 1873-7153. ; 211, s. 149-158
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Bio-crude is a renewable source for production of valuable energy carriers. Prior to its utilization, a conditioning step of the raw pyrolysis gas can be beneficial before the bio-crude is converted via catalytic hydrodeoxygenation (HDO) into liquid hydrocarbon products, or via steam reforming (SR) to synthesis gas/hydrogen. An experimental small industrial scale study for the chemistry of atmospheric pressure pyrolysis gas conditioning resulting in bio-crude deoxygenation and a hydrogen-rich gas using an iron-based catalyst without addition of hydrogen or steam is presented and discussed. Following a short catalyst stabilization period with fluctuating bed temperatures, the catalyst operated near 450°C at a space velocity of 1100 h-1 for 8 hours under stable conditions during which no significant catalyst deactivation was observed. Experimental results indicate a 70-80% reduction of acetic acid, methoxy phenols, and catechol, and a 55-65% reduction in non-aromatic ketones, BTX, and heterocycles. Alkyl phenols and phenols were least affected, showing a 30-35% reduction. Conditioning of the pyrolysis gas resulted in a 56 % and a 18 wt% increase in water and permanent (dry) gas yield, respectively, and a 29 % loss of condensable carbon. A significant reduction of CO amount (-38 %), and production of H2 (+1063 %) and CO2 (+36 %) over the catalyst was achieved, while there was no or minimal change in light hydrocarbon content. Probing the catalyst after the test, the bulk phase of the catalyst was found to be magnetite (Fe3O4) and the catalyst exhibited significant water gas shift (WGS) reaction activity. The measured gas composition during the test was indicative of no or very limited Fischer-Tropsch (FT) CO /CO2 hydrogenation activity and this infers that also the active surface phase of the catalyst during the test was Fe-oxide, rather than Fe-carbide. The results show that iron-based materials are potential candidates for application in a pyrolysis gas pre-conditioning step before further treatment or use, and a way of generating a hydrogen-enriched gas without the need for bio-crude condensation.
  •  
7.
  • H. Moud, Pouya (författare)
  • Catalytic Conversion of Undesired Organic Compounds to Syngas in Biomass Gasification and Pyrolysis Applications
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Reliable energy supply is a major concern and crucial for development of the global society. To address the dependency on fossil fuel and the negative effects of this reliance on climate, there is a need for a transition to cleaner sources. An attractive solution for replacing fossil-based products is renewable substitutes produced from biomass. Gasification and pyrolysis are two promising thermochemical conversion technologies, facing challenges before large-scale commercialization becomes viable. In case of biomass gasification, tar is often and undesired by-product. An attractive option to convert tar into syngas is nickel-based catalytic steam reforming (SR). For biomass pyrolysis, catalytic SR is in early stages of investigation as a feasible option for bio-crude conversion to syngas.The focus of the thesis is partly dedicated to describe research aimed at increasing the knowledge around tar reforming mechanisms and effect of biomass-derived impurities on Ni-based tar reforming catalyst downstream of gasifiers. The work focuses on better understanding of gas-phase alkali interaction with Ni-based catalyst surface under realistic conditions. A methodology was successfully developed to enable controlled investigation of the combined sulfur (S) and potassium (K) interaction with the catalyst. The most striking result was that K appears to lower the sulfur coverage and increases methane and tar reforming activity. Additionally, the results obtained in the atomistic investigations are discussed in terms of naphthalene adsorption, dehydrogenation and carbon passivation of nickel.Furthermore, the thesis describes research performed on pyrolysis gas pre-conditioning at a small-industrial scale, using an iron-based catalyst. Findings showed that Fe-based materials are potential candidates for application in a pyrolysis gas pre-conditioning step before further treatment or use, and a way for generating a hydrogen-enriched gas without the need for bio-crude condensation.
  •  
8.
  • Haghighi Moud, Pouya, et al. (författare)
  • Equilibrium potassium coverage and its effect on a Ni tar reforming catalyst in alkali- and sulfur-laden biomass gasification gases
  • 2016
  • Ingår i: Applied Catalysis B. - : Elsevier. - 0926-3373 .- 1873-3883. ; 190, s. 137-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass conversion to syngas via gasification produces certain levels of gaseous by-products, such as tar and inorganic impurities (sulfur, potassium, phosphorus etc.). Nickel, a commonly used catalyst for hydrocarbqn steam reforming, suffers reduced reforming activity by small amounts of sulfur (S) or potassium (K), while resistance against deleterious carbon whisker formation increases. Nevertheless, the combined effect of biomass derived gas phase alkali at varying concentrations together with sulfur on tar reforming catalyst performance under realistic steady-state conditions is largely unknown. Prior to this study, a methodology to monitor these effects by precise K dosing as well as K co-dosing with S was successfully developed. A setup consisting of a 5 kW biomass fed atmospheric bubbling fluidized bed gasifier, a high temperature hot gas ceramic filter, and a catalytic reactor operating at 800 degrees C were used in the experiments. Within the current study, two test periods were conducted, including 30 h with 1 ppmv potassium chloride (KCl) dosing followed by 6 h without KCl dosing. Besides an essentially carbon-free operation, it can be concluded that although K, above a certain threshold surface concentration, is known to block active Ni sites and decrease activity in traditional steam reforming, it appears to lower the surface S coverage (theta(s)) at active Ni sites. This reduction in theta(s) increases the conversion of methane and aromatics in tar reforming application, which is most likely related to K-induced softening of the S-Ni bond. The K-modified support surface may also contribute to the significant increase in reactivity towards tar molecules. In addition, previously unknown relevant concentrations of K during realistic operating conditions on typical Ni-based reforming catalysts are extrapolated to lie below 100 mu K/m(2), a conclusion based on the 10-40 mu K/m(2) equilibrium coverages observed for the Ni/MgAl2O4 catalyst in the present study.
  •  
9.
  • Hernandez, Asbel, et al. (författare)
  • Gas-Phase Potassium Effects and the Role of the Support on the Tar Reforming of Biomass-Derived Producer Gas Over Sulfur-Equilibrated Ni/MgAl2O4
  • 2020
  • Ingår i: Energy & Fuels. - : American Chemical Society. - 0887-0624 .- 1520-5029. ; 34:9, s. 11103-11111
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass gasification is a sustainable way to convert biomass residues into valuable fuels and chemicals via syngas production. However, several gas impurities need to be removed before the final synthesis. Understanding of the interactions and effects of biomass-derived producer gas contaminants (S and K) on the performance of reforming catalysts is of great importance when it comes to process reliability and development. In the present study, the steam reforming activity at 800 °C of a sulfur-equilibrated nickel catalyst during controlled exposure to alkali species (∼2 ppmv K) and in its absence was investigated using real producer gas from a 5 kWth O2-blown fluidized-bed gasifier. Conversions of CH4, C2H4, and C10H8 were used to evaluate the performance of the Ni/MgAl2O4 catalyst and MgAl2O4 support. A significant and positive effect on the catalyst activity is observed with addition of gas-phase KCl. This is assigned primarily to the observed K-induced reduction in sulfur coverage (θS) on Ni—an effect which is reversible. The catalytic contribution of the K-modified pure MgAl2O4 support was found to be significant in the conversion of naphthalene but not for light hydrocarbons. The product and catalyst analyses provided evidence to elucidate the preferential adsorption site for S and K on the catalyst as well as the role of the support. Whereas S, as expected, was found to preferentially adsorb on the surface of Ni particles, forming S-Ni sites, K was found to preferentially adsorb on the MgAl2O4 support. A low but still significant K adsorption on S–Ni sites, or an effect on only the fraction of exposed Ni surface area near the metal–support interface, can, however, not be excluded. The result suggests that an improved Ni/MgAl2O4 catalyst activity and an essentially carbon-free operation can be achieved in the presence of controlled amount of gas-phase potassium and high sulfur coverages on Ni. Based on the results, a mechanism of the possible K–S interactions is proposed.
  •  
10.
  • Hernandez, Asbel, et al. (författare)
  • Preferential adsorption of K species and the role of support during reforming of biomass derived producer gas over sulfur passivated Ni/MgAl2O4
  • 2020
  • Ingår i: Energy & Fuels. - 0887-0624 .- 1520-5029. ; 34:9, s. 11103-11111
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass gasification is a sustainable way to convert biomass residues into valuable fuels and chemicals via syngasproduction. However, several gas impurities need to be removed before thefinal synthesis. Understanding of the interactions andeffects of biomass-derived producer gas contaminants (S and K) on the performance of reforming catalysts is of great importancewhen it comes to process reliability and development. In the present study, the steam reforming activity at 800°C of a sulfur-equilibrated nickel catalyst during controlled exposure to alkali species (∼2 ppmv K) and in its absence was investigated using realproducer gas from a 5 kWthO2-blownfluidized-bed gasifier. Conversions of CH4,C2H4, and C10H8were used to evaluate theperformance of the Ni/MgAl2O4catalyst and MgAl2O4support. A significant and positive effect on the catalyst activity is observedwith addition of gas-phase KCl. This is assigned primarily to the observed K-induced reduction in sulfur coverage (θS)onNianeffect which is reversible. The catalytic contribution of the K-modified pure MgAl2O4support was found to be significant in theconversion of naphthalene but not for light hydrocarbons. The product and catalyst analyses provided evidence to elucidate thepreferential adsorption site for S and K on the catalyst as well as the role of the support. Whereas S, as expected, was found topreferentially adsorb on the surface of Ni particles, forming S-Ni sites, K was found to preferentially adsorb on the MgAl2O4support.A low but still significant K adsorption on S−Ni sites, or an effect on only the fraction of exposed Ni surface area near the metal−support interface, can, however, not be excluded. The result suggests that an improved Ni/MgAl2O4catalyst activity and anessentially carbon-free operation can be achieved in the presence of controlled amount of gas-phase potassium and high sulfurcoverages on Ni. Based on the results, a mechanism of the possible K−S interactions is proposed
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
Typ av publikation
tidskriftsartikel (18)
konferensbidrag (3)
forskningsöversikt (3)
rapport (2)
annan publikation (2)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (9)
populärvet., debatt m.m. (1)
Författare/redaktör
Griffiths, J. (5)
Jones, G. (5)
Li, Y. (5)
Nowak, S. (5)
Price, D. (5)
Silva, J. (5)
visa fler...
Spagnolo, S. (5)
Walker, R. (5)
Gao, Y. (5)
Kaufman, M (5)
Taylor, D (5)
Clark, M. (5)
Robinson, S. (5)
Nicassio, M. (5)
Foley, S. (5)
Garcia, J. (5)
Zhang, W. (5)
West, A. (5)
Wheeler, S. (5)
Smith, P. (5)
Morris, J. (5)
Wood, R (5)
Bowden, M. (5)
Knight, M (5)
Davies, A (5)
Sridhar, S. (5)
Young, R. (5)
Rodrigues, P (5)
Duran, I (5)
Mayer, M. (5)
Lopez, J. M. (5)
Thomas, J. (5)
Hjalmarsson, A. (5)
Buckingham, R. (5)
Wang, N. (5)
Belli, F. (5)
Krieger, K. (5)
Airila, M (5)
Albanese, R (5)
Alper, B (5)
Ambrosino, G (5)
Angioni, C (5)
Ariola, M (5)
Ash, A (5)
Avotina, L (5)
Baciero, A (5)
Balboa, I (5)
Balden, M (5)
Balshaw, N (5)
Barnsley, R (5)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (11)
Uppsala universitet (8)
Stockholms universitet (6)
Chalmers tekniska högskola (6)
Göteborgs universitet (4)
Lunds universitet (4)
visa fler...
Karolinska Institutet (2)
Sveriges Lantbruksuniversitet (2)
Södertörns högskola (1)
RISE (1)
visa färre...
Språk
Engelska (25)
Svenska (2)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Teknik (14)
Samhällsvetenskap (4)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy