SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Ove Associate Professor) "

Sökning: WFRF:(Andersson Ove Associate Professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Magnus, 1975- (författare)
  • Construction of force measuring optical tweezers instrumentation and investigations of biophysical properties of bacterial adhesion organelles
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Optical tweezers are a technique in which microscopic-sized particles, including living cells and bacteria, can be non-intrusively trapped with high accuracy solely using focused light. The technique has therefore become a powerful tool in the field of biophysics. Optical tweezers thereby provide outstanding manipulation possibilities of cells as well as semi-transparent materials, both non-invasively and non-destructively, in biological systems. In addition, optical tweezers can measure minute forces (< 10-12 N), probe molecular interactions and their energy landscapes, and apply both static and dynamic forces in biological systems in a controlled manner. The assessment of intermolecular forces with force measuring optical tweezers, and thereby the biomechanical structure of biological objects, has therefore considerably facilitated our understanding of interactions and structures of biological systems. Adhesive bacterial organelles, so called pili, mediate adhesion to host cells and are therefore crucial for the initial bacterial-cell contact. Thus, they serve as an important virulence factor. The investigation of pili, both their biogenesis and their expected in vivo properties, brings information that can be of importance for the design of new drugs to prevent bacterial infections, which is crucial in the era of increased bacterial resistance towards antibiotics. In this thesis, an experimental setup of a force measuring optical tweezers system and the results of a number of biomechanical investigations of adhesive bacterial organelles are presented. Force measuring optical tweezers have been used to characterize three different types of adhesive organelles under various conditions, P, type 1, and S pili, which all are expressed by uropathogenic Escherichia coli. A quantitative biophysical force-extension model, built upon the structure and force response, has been developed. It is found, that this model describes the biomechanical properties for all three pili in an excellent way. Various parameters in their energy landscape, e.g., bond lengths and transition barrier heights, are assessed and the difference in behavior is compared. The work has resulted in a method that in a swift way allows us to probe different types of pili with high force and high spatial resolution, which has provided an enhanced understanding of the biomechanical function of these pili.
  •  
2.
  • Pontoni, Angèle, 1994- (författare)
  • Development and simulated observations of the Jovian Neutrals Analyzer
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with the development of the Jovian Neutrals Analyzer (JNA) for the Jupiter ICy moons Explorer (JUICE) mission to Jupiter, planned to launch in 2023. Jupiter, the largest planet in the Solar System, orbits the Sun at five times the distance from the Earth to the Sun, accompanied by dozens of moons, rings, and the largest object in the SolarSystem: the Jovian magnetosphere. Born of the interaction betweenthe solar wind and Jupiter’s strong magnetic field, the Jovian magneto-sphere is host to a number of unique, complex phenomena, includingthe creation of a sheet of energetic particles orbiting the giant planetand interacting with its four largest moons: Io, Europa, Ganymede, and Callisto.A better understanding of Jupiter’s magnetosphere and its interaction with its four largest moons is one of the main objectives of the JUICE mission. To achieve this goal, JUICE is equipped with the Particle Environment Package (PEP), comprised of six particle sensors, including JNA. By measuring low-energy Energetic Neutral Atoms (ENAs) in the range from 10 eV to 3.3 keV, JNA will image the plasma co-located with the orbit of Io, and reveal ion precipitation patterns at the surface of Jupiter’s icy moons.JNA improves on its predecessors (CENA on Chandrayaan-1 and ENA on BepiColombo) by featuring a higher angular resolution, with a 150◦ field-of-view divided into 11 pixels. JNA is also more resistant to radiation, a necessary improvement to be able to make measurements in the harsh radiation environment expected in the Jovian system. To measure ENAs in the low-energy range, JNA uses a charged particle deflector to remove ambient ions; a charge conversion surface to ionize incoming neutral particles, which are then energy-analyzed by an electrostatic wave system; and a Time-of-Flight cell to derive the mass of the original particle.In this work, we report on how JNA was designed, developed, and calibrated. We show the first results of JNA’s calibration campaign, and compare them to its expected performance. Finally, to facilitate the interpretation of JNA data at Jupiter, we estimate ENA fluxes expected at Ganymede and use our results to simulate JNA observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy