SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andreae MO) "

Sökning: WFRF:(Andreae MO)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mircea, M, et al. (författare)
  • Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin
  • 2005
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 5, s. 3111-3126
  • Tidskriftsartikel (refereegranskat)abstract
    • The aerosol in the Amazon basin is dominated throughout the year by organic matter, for the most part soluble in water. In this modeling study, we show how the knowledge of water-soluble organic compounds (WSOC) and the associated physical and chemical properties (e.g. solubility, surface tension, dissociation into ions) affect the hygroscopic growth and activation of the aerosol in this area. The study is based on data obtained during the SMOCC field experiment carried out in Rondonia, Brazil, over a period encompassing the dry (biomass burning) season to the onset of the wet season (September to mid-November, 2002). The comparison of predicted and measured cloud condensation nuclei (CCN) number concentration shows that the knowledge of aerosol WSOC composition in terms of classes of compounds and of their relative molecular weights and acidic properties may be sufficient to predict aerosol activation, without any information on solubility. Conversely, the lack of knowledge on WSOC solubility leads to a high overestimation of the observed diameter growth factors (DGF) by the theory. Moreover, the aerosol water soluble inorganic species fail to predict both DGFs and CCN number concentration. In fact, this study shows that a good reproduction of the measured DGF and CCN concentration is obtained if the chemical composition of aerosol, especially that of WSOC, is appropriately taken into account in the calculations. New parameterizations for the computed CCN spectra are also derived which take into account the variability caused by chemical effects (surface tension, molecular composition, solubility, degree of dissociation of WSOC).
  •  
2.
  • Rissler, Jenny, et al. (författare)
  • Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations
  • 2004
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 4:8, s. 2119-2143
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-micrometer atmospheric aerosol particles were studied in the Amazon region, 125 km northeast of Manaus, Brazil (-1degrees55.2'S, 59degrees28.1'W). The measurements were performed during the wet-to-dry transition period, 4-28 July 2001 as part of the LBA (Large-Scale Biosphere Atmosphere Experiment in Amazonia) CLAIRE-2001 (Cooperative LBA Airborne Regional Experiment) experiment. The number size distribution was measured with two parallel differential mobility analyzers, the hygroscopic growth at 90% RH with a Hygroscopic Tandem Mobility Analyzer (H-TDMA) and the concentrations of cloud condensation nuclei (CCN) with a cloud condensation nuclei counter. A model was developed that uses the H-TDMA data to predict the number of soluble molecules or ions in the individual particles and the corresponding minimum particle diameter for activation into a cloud droplet at a certain supersaturation. Integrating the number size distribution above this diameter, CCN concentrations were predicted with a time resolution of 10 min and compared to the measured concentrations. During the study period, three different air masses were identified and compared: clean background, air influenced by aged biomass burning, and moderately polluted air from recent local biomass burning. For the clean period 2001, similar number size distributions and hygroscopic behavior were observed as during the wet season at the same site in 1998, with mostly internally mixed particles of low diameter growth factor (similar to1.3 taken from dry to 90% RH). During the periods influenced by biomass burning the hygroscopic growth changed slightly, but the largest difference was seen in the number size distribution. The CCN model was found to be successful in predicting the measured CCN concentrations, typically within 25%. A sensitivity study showed relatively small dependence on the assumption of which model salt that was used to predict CCN concentrations from H-TDMA data. One strength of using H-TDMA data to predict CCN concentrations is that the model can also take into account soluble organic compounds, insofar as they go into solution at 90% RH. Another advantage is the higher time resolution compared to using size-resolved chemical composition data.
  •  
3.
  • Rissler, Jenny, et al. (författare)
  • Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia
  • 2006
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 6:2, s. 471-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia). The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate), and cover the later part of the dry season (with heavy biomass burning), a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850 nm) and an APS (Aerodynamic Particle Sizer), extending the distributions up to 3.3 mu m in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer) measured the hygroscopic diameter growth factors (Gf) at 90% relative humidity (RH), for particles with dry diameters (d(p)) between 20-440 nm, and at several occasions RH scans (30-90% RH) were performed for 165 nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD) of similar to 12 nm, an Aitken mode (GMD=61-92 nm) and an accumulation mode (GMD=128-190 nm). The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf similar to 1.09 for 100 nm particles) and moderately hygroscopic (Gf similar to 1.26). While the hygroscopic growth factors were surprisingly similar over the periods, the number fraction of particles belonging to each hygroscopic group varied more, with the dry period aerosol being more dominated by nearly hydrophobic particles. As a result the total particle water uptake rose going into the cleaner period. The fraction of moderately hygroscopic particles was consistently larger for particles in the accumulation mode compared to the Aitken mode for all periods. Scanning the H-TDMA over RH (30-90% RH) showed no deliquescence behavior. A parameterization of both Gf(RH) and Gf(d(p)), is given.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy