SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andreassen Ashild K.) "

Sökning: WFRF:(Andreassen Ashild K.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asghar, Naveed, et al. (författare)
  • Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance.
  • 2014
  • Ingår i: PLOS ONE. - San Francisco, USA : Public Library of Science (PLoS). - 1932-6203. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The increased distribution of the tick-borne encephalitis virus (TBEV) in Scandinavia highlights the importance of characterizing novel sequences within the natural foci. In this study, two TBEV strains: the Norwegian Mandal 2009 (questing nymphs pool) and the Swedish Saringe 2009 (blood-fed nymph) were sequenced and phylogenetically characterized. Interestingly, the sequence of Mandal 2009 revealed the shorter form of the TBEV genome, similar to the highly virulent Hypr strain, within the 3' non-coding region (3'NCR). A different genomic structure was found in the 3'NCR of Saringe 2009, as in-depth analysis demonstrated TBEV variants with different lengths within the poly(A) tract. This shows that TBEV quasispecies exists in nature and indicates a putative shift in the quasispecies pool when the virus switches between invertebrate and vertebrate environments. This prompted us to further sequence and analyze the 3'NCRs of additional Scandinavian TBEV strains and control strains, Hypr and Neudoerfl. Toro 2003 and Habo 2011 contained mainly a short (A)3C(A)6 poly(A) tract. A similar pattern was observed for the human TBEV isolates 1993/783 and 1991/4944; however, one clone of 1991/4944 contained an (A)3C(A)11 poly(A) sequence, demonstrating that quasispecies with longer poly(A) could be present in human isolates. Neudoerfl has previously been reported to contain a poly(A) region, but to our surprise the re-sequenced genome contained two major quasispecies variants, both lacking the poly(A) tract. We speculate that the observed differences are important factors for the understanding of virulence, spread, and control of the TBEV.
  •  
2.
  • Paulsen, Katrine M., et al. (författare)
  • High-throughput sequencing of two European strains of tick-borne encephalitis virus (TBEV), Hochosterwitz and 1993/783
  • 2021
  • Ingår i: Ticks and Tick-borne Diseases. - : Elsevier. - 1877-959X .- 1877-9603. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tick-borne encephalitis virus (TBEV) is a medically important arbovirus, widespread in Europe and Asia. The virus is primarily transmitted to humans and animals by bites from ticks and, in rare cases, by consumption of unpasteurized dairy products. The aim of this study was to sequence and characterize two TBEV strains with amplicon sequencing by designing overlapping primers. The amplicon sequencing, via Illumina MiSeq, covering nearly the entire TBEV genome, was successful: We retrieved and characterized the complete polyprotein sequence of two TBEV strains, Hochosterwitz and 1993/783 from Austria and Sweden, respectively. In this study the previous phylogenetic analysis of both strains was confirmed to be of the European subtypes of TBEV (TBEV-Eu) by whole genome sequencing. The Hochosterwitz strain clustered with the two strains KrM 93 and KrM 213 from South Korea, and the 1993/783 strain clustered together with the NL/UH strain from the Netherlands. Our study confirms the suitability and rapidness of the high-throughput sequencing method used to produce complete TBEV genomes from TBEV samples of high viral load giving high-molecular-weight cDNA with large overlapping amplicons.
  •  
3.
  • Quarsten, Hanne, et al. (författare)
  • No detection of tick-borne encephalitis virus RNA in blood, urine or saliva of hospitalised immunocompetent tick-borne encephalitis patients
  • 2024
  • Ingår i: PLOS ONE. - 1932-6203. ; 19:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Tick-borne encephalitis (TBE) is usually diagnosed based on the presence of TBE virus (TBEV)-specific IgM and IgG antibodies in serum. However, antibodies induced by vaccination or cross-reactivity to previous flavivirus infections may result in false positive TBEV serology. Detection of TBEV RNA may be an alternative diagnostic approach to detect viral presence and circumvent the diagnostic difficulties present when using serology. Viral RNA in blood is commonly detectable only in the first viremic phase usually lasting up to two weeks, and not in the second neurologic phase, when the patients contact the health care system and undergo diagnostic work-up. TBEV RNA has previously been detected in urine in a few retrospective TBE cases in the neurologic phase, and furthermore RNA of other flaviviruses has been detected in patient saliva. In this study, blood, saliva and urine were collected from 31 hospitalised immunocompetent patients with pleocytosis and symptoms of aseptic meningitis and/or encephalitis, suspected to have TBE. We wanted to pursue if molecular testing of TBEV RNA in these patient materials may be useful in the diagnostics. Eleven of the 31 study patients were diagnosed with TBE based on ELISA detection of TBEV specific IgG and IgM antibodies. None of the study patients had TBEV RNA detectable in any of the collected patient material.
  •  
4.
  • Vikse, Rose, et al. (författare)
  • Geographical distribution and prevalence of tick-borne encephalitis virus in questing Ixodes ricinus ticks and phylogeographic structure of the Ixodes ricinus vector in Norway
  • 2020
  • Ingår i: Zoonoses and Public Health. - : WILEY. - 1863-1959 .- 1863-2378. ; 67:4, s. 370-381
  • Tidskriftsartikel (refereegranskat)abstract
    • The tick-borne encephalitis virus (TBEV), a zoonotic flaviviral infection, is endemic in large parts of Norway and Eurasia. Humans are mainly infected with TBEV via bites from infected ticks. In Norway, the main geographical distribution of ticks is along the Norwegian coastline from southeast (similar to 59 degrees N) and up to the southern parts of Nordland County (similar to 65 degrees N). In this study, we collected ticks by flagging along the coast from ostfold County to Nordland County. By whole-genome sequencing of the mitochondrial genome of Ixodes ricinus, the phylogenetic tree suggests that there is limited phylogeographic structure both in Norway and in Europe. The overall TBEV prevalence is 0.3% for nymphs and 4.3% for adults. The highest estimated TBEV prevalence in adult ticks was detected in Rogaland and Vestfold County, while for nymphs it is highest in Vestfold, Vest-Agder and Rogaland. The present work is one of the largest studies on distribution and prevalence of TBEV in ticks in Scandinavia, showing that the virus is wider distributed in Norway than previously anticipated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy