SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andressoo Jaan Olle) "

Sökning: WFRF:(Andressoo Jaan Olle)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindholm, Paivi, et al. (författare)
  • MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain
  • 2008
  • Ingår i: Molecular and Cellular Neuroscience. - : Elsevier BV. - 1044-7431. ; 39:3, s. 356-371
  • Tidskriftsartikel (refereegranskat)abstract
    • The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been described as a Survival factor for dopaminergic neurons in vitro, but its expression in mammalian tissues is poorly known. MANF and a homologous Protein, the conserved dopamine neurotrophic factor (CDNF), form a novel evolutionary conserved family of neurotrophic factors. Here we used in situ hybridization and immunohistochemistry to characterize MANF expression in developing and adult mouse. MANF expression was widespread in the nervous system and non-neuronal tissues. In the brain, relatively high MANF levels were detected in the cerebral cortex, hippocampus and cerebellar Purkinje cells. After status epilepticus, Manf mRNA expression was transiently increased in the dentate granule cell layer of hippocampus, thalamic reticular nucleus and in several cortical areas. In contrast, following global forebrain ischemia changes in Manf expression were widespread in the hippocampal formation and more restricted in cerebral cortex. The widespread expression of MANF together with its evolutionary conserved nature and regulation by brain insults suggest that it has important functions both under normal and pathological conditions in many tissue types. (C) 2008 Elsevier Inc. All rights reserved.
  •  
2.
  •  
3.
  • Kopra, Jaakko J., et al. (författare)
  • Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF
  • 2017
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 37:6, s. 1581-1590
  • Tidskriftsartikel (refereegranskat)abstract
    • Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum.
  •  
4.
  • Kumar, Anmol, et al. (författare)
  • GDNF Overexpression from the Native Locus Reveals its Role in the Nigrostriatal Dopaminergic System Function
  • 2015
  • Ingår i: PLOS Genetics. - : PLoS. - 1553-7390 .- 1553-7404. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Degeneration of nigrostriatal dopaminergic system is the principal lesion in Parkinson's disease. Because glial cell line-derived neurotrophic factor (GDNF) promotes survival of dopamine neurons in vitro and in vivo, intracranial delivery of GDNF has been attempted for Parkinson's disease treatment but with variable success. For improving GDNF-based therapies, knowledge on physiological role of endogenous GDNF at the sites of its expression is important. However, due to limitations of existing genetic model systems, such knowledge is scarce. Here, we report that prevention of transcription of Gdnf 3'UTR in Gdnf endogenous locus yields GDNF hypermorphic mice with increased, but spatially unchanged GDNF expression, enabling analysis of postnatal GDNF function. We found that increased level of GDNF in the central nervous system increases the number of adult dopamine neurons in the substantia nigra pars compacta and the number of dopaminergic terminals in the dorsal striatum. At the functional level, GDNF levels increased striatal tissue dopamine levels and augmented striatal dopamine release and re-uptake. In a proteasome inhibitor lactacystin-induced model of Parkinson's disease GDNF hypermorphic mice were protected from the reduction in striatal dopamine and failure of dopaminergic system function. Importantly, adverse phenotypic effects associated with spatially unregulated GDNF applications were not observed. Enhanced GDNF levels up-regulated striatal dopamine transporter activity by at least five fold resulting in enhanced susceptibility to 6-OHDA, a toxin transported into dopamine neurons by DAT. Further, we report how GDNF levels regulate kidney development and identify microRNAs miR-9, miR-96, miR-133, and miR-146a as negative regulators of GDNF expression via interaction with Gdnf 3'UTR in vitro. Our results reveal the role of GDNF in nigrostriatal dopamine system postnatal development and adult function, and highlight the importance of correct spatial expression of GDNF. Furthermore, our results suggest that 3'UTR targeting may constitute a useful tool in analyzing gene function.
  •  
5.
  • Mätlik, Kärt, et al. (författare)
  • Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia.
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578.
  • Tidskriftsartikel (refereegranskat)abstract
    • Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
  •  
6.
  • Olfat, Soophie, et al. (författare)
  • Increased Physiological GDNF Levels Have No Effect on Dopamine Neuron Protection and Restoration in a Proteasome Inhibition Mouse Model of Parkinson’s Disease
  • 2023
  • Ingår i: eNeuro. - 2373-2822. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson’s disease (PD) is a progressive neurodegenerative disease that comprises a range of motor and nonmotor symptoms. Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of dopamine neurons in vitro and in vivo, and intracranial delivery of GDNF has been tested in six clinical trials for treating PD. However, clinical trials with ectopic GDNF have yielded variable results, which could in part result from abnormal expression site and levels caused by ectopic overexpression. Therefore, an important open question is whether an increase in endogenous GDNF expression could be potent in reversing PD progression. Here, we tested the therapeutic potential of endogenous GDNF using mice in which endogenous GDNF can be conditionally upregulated specifically in cells that express GDNF naturally (conditional GDNF hypermorphic mice; GdnfcHyper). We analyzed the impact of endogenous GDNF upregulation in both neuroprotection and neurorestoration procedures, and for both motor and nonmotor symptoms in the proteasome inhibitor lactacystin (LC) model of PD. Our results showed that upregulation of endogenous GDNF in the adult striatum is not protective in LC-induced PD model in mice. Since age is the largest risk factor for PD, we also analyzed the effect of deletion of endogenous GDNF in aged Gdnf conditional knock-out mice. We found that GDNF deletion does not increase susceptibility to LC-induced damage. We conclude that endogenous GDNF does not impact the outcome in the LC-induced proteasome inhibition mouse model of Parkinson’s disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy