SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andretta V.) "

Sökning: WFRF:(Andretta V.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Zouganelis, I., et al. (författare)
  • The Solar Orbiter Science Activity Plan : Translating solar and heliospheric physics questions into action
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
  •  
4.
  • Telloni, D., et al. (författare)
  • First polar observations of the fast solar wind with the Metis - Solar Orbiter coronagraph : Role of 2D turbulence energy dissipation in the wind acceleration
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The fast solar wind is known to emanate from polar coronal holes.Aims. This Letter reports the first estimate of the expansion rate of polar coronal flows performed by the Metis coronagraph on board Solar Orbiter.Methods. By exploiting simultaneous measurements in polarized white light and ultraviolet intensity of the neutral hydrogen Lyman-α line, it was possible to extend observations of the outflow velocity of the main component of the solar wind from polar coronal holes out to 5.5 R⊙, the limit of diagnostic applicability and observational capabilities.Results. We complement the results obtained with analogous polar observations performed with the UltraViolet Coronagraph Spectrometer on board the SOlar and Heliospheric Observatory during the previous full solar activity cycle, and find them to be satisfactorily reproduced by a magnetohydrodynamic turbulence model.Conclusions. This suggests that the dissipation of 2D turbulence energy is a viable mechanism for coronal plasma heating and the subsequent acceleration of the fast solar wind.
  •  
5.
  • Lanzafame, A. C., et al. (författare)
  • Gaia Data Release 3 : Stellar chromospheric activity and mass accretion from Ca II IRT observed by the Radial Velocity Spectrometer
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Gaia Radial Velocity Spectrometer (RVS) provides the unique opportunity of a spectroscopic analysis of millions of stars at medium resolution (lambda/Delta lambda similar to 11 500) in the near-infrared (845 872 nm). This wavelength range includes the Ca ii infrared triplet (IRT) at 850.03, 854.44, and 866.45 nm, which is a good indicator of magnetic activity in the chromosphere of late-type stars.Aims: Here we present the method devised for inferring the Gaia stellar activity index from the analysis of the Ca ii IRT in the RVS spectrum, together with its scientific validation.Methods: The Gaia stellar activity index is derived from the Ca ii IRT excess equivalent width with respect to a reference spectrum, taking the projected rotational velocity (v sin i) into account. We performed scientific validation of the Gaia stellar activity index by deriving a R'(IRT) index, which is largely independent of the photospheric parameters, and considering the correlation with the R'(HK) index for a sample of stars. A sample of well-studied pre-main-sequence (PMS) stars is considered to identify the regime in which the Gaia stellar activity index may be a ffected by mass accretion. The position of these stars in the colour-magnitude diagram and the correlation with the amplitude of the photometric rotational modulation is also scrutinised.Results: Gaia DR3 contains a stellar activity index derived from the Ca ii IRT for some 2 x 10(6) stars in the Galaxy. This represents a `gold mine' for studies on stellar magnetic activity and mass accretion in the solar vicinity. Three regimes of the chromospheric stellar activity are identified, confirming suggestions made by previous authors based on much smaller R-HK(') datasets. The highest stellar activity regime is associated with PMS stars and RS CVn systems, in which activity is enhanced by tidal interaction. Some evidence of a bimodal distribution in main sequence (MS) stars with T-eff >= 5000K is also found, which defines the two other regimes, without a clear gap in between. Stars with 3500K. T-e ff <= 5000K are found to be either very active PMS stars or active MS stars with a unimodal distribution in chromospheric activity. A dramatic change in the activity distribution is found for T-e ff <= 3500 K, with a dominance of low activity stars close to the transition between partially- and fully convective stars and a rise in activity down into the fully convective regime.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy