SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andreu Rafael) "

Search: WFRF:(Andreu Rafael)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abolfathi, Bela, et al. (author)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • In: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Journal article (peer-reviewed)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
2.
  • Andreu, Rafael, et al. (author)
  • Direct electron transfer kinetics in horseradish peroxidase electrocatalysis
  • 2007
  • In: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 111:2, s. 469-477
  • Journal article (peer-reviewed)abstract
    • The study of direct electron transfer between enzymes and electrodes is frequently hampered by the small fraction of adsorbed proteins that remains electrochemically active. Here, we outline a strategy to overcome this limitation, which is based on a hierarchical analysis of steady-state electrocatalytic currents and the adoption of the "binary activity" hypothesis. The procedure is illustrated by studying the electrocatalytic response of horseradish peroxidase (HRP) adsorbed on graphite electrodes as a function of substrate (hydrogen peroxide) concentration, electrode potential, and solution pH. Individual contributions of the rates of substrate/enzyme reaction and of the electrode/enzyme electron exchange to the observed catalytic currents were disentangled by taking advantage of their distinct dependence on substrate concentration and electrode potential. In the absence of nonturnover currents, adoption of the "binary activity" hypothesis provided values of the standard electron-transfer rate constant for reduction of HRP Compound II that are similar to those reported previously for reduction of cytochrome c peroxidase Compound II. The variation of the catalytic currents with applied potential was analyzed in terms of the non-adiabatic Marcus-DOS electron transfer theory. The availability of a broad potential window, where catalytic currents could be recorded, facilitates an accurate determination of both the reorganization energy and the maximum electron-transfer rate for HRP Compound II reduction. The variation of these two kinetic parameters with solution pH provides some indication of the nature and location of the acid/base groups that control the electronic exchange between enzyme and electrode.
  •  
3.
  • Arheimer, Berit, et al. (author)
  • The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING)
  • 2024
  • In: Hydrological Sciences Journal. - 0262-6667 .- 2150-3435.
  • Journal article (peer-reviewed)abstract
    • The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes.
  •  
4.
  • Blanton, Michael R., et al. (author)
  • Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
  • 2017
  • In: Astronomical Journal. - : IOP Publishing Ltd. - 0004-6256 .- 1538-3881. ; 154:1
  • Journal article (peer-reviewed)abstract
    • We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and. high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z similar to 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z similar to 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs. and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the. Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
  •  
5.
  • Bollella, Paolo, et al. (author)
  • Highly sensitive, stable and selective hydrogen peroxide amperometric biosensors based on peroxidases from different sources wired by Os-polymer : A comparative study
  • 2018
  • In: Solid State Ionics. - : Elsevier BV. - 0167-2738. ; 314, s. 178-186
  • Journal article (peer-reviewed)abstract
    • A comparison was made between two plant peroxidases, cationic horseradish peroxidase (HRP) and anionic tobacco peroxidase (TOP), combined with a highly cationic osmium polymer [Os(4,4'-dimethyl-2,2'-bipyridine)2poly(N-vinylimidazole)10Cl]+2/+ ([Os(dmp)PVI]+/2+) to develop highly sensitive, stable and selective hydrogen peroxide biosensors. The two different plant peroxidases were individually immobilized onto graphite rod (G) electrodes by a three steps drop-casting procedure consisting of the subsequent deposition of an aqueous solution of ([Os(dmp)PVI]+/2+), followed by a solution of poly(ethyleneglycol) diglycidyl ether (PEGDGE), used as a cross linking agent and finally an aliquot of a solution of cationic HRP or anionic TOP to make HRP/PEGDGE/[Os(dmp)PVI]+/2+/G and TOP/PEGDGE/[Os(dmp)PVI]+/2+/G based electrodes, respectively. Electrochemical experiments were carried out to investigate the influence of the surface charge of the enzyme and the charge of the polymer on the efficiency of the electron transfer (ET) between the enzyme and the wiring redox polymer and the efficiency for electrocatalytic reduction of H2O2. In the case of HRP a decrease in the ET rate was observed due to the repulsion between this enzyme and the polymer, both positively charged, whereas with TOP there was an enhanced ET rate due to the attraction between the anionic enzyme and the cationic polymer. The effects of enzyme loading and pH were investigated. Both peroxidase modified electrodes exhibited a wide dynamic response range (1-500μM H2O2) and a low detection limit (0.3μM H2O2). The TOP based electrode showed a higher sensitivity (470nAμM-1 cm-2) compared to that of the HRP based electrode (300nAμM-1 cm-2) and an improved long-term stability (decrease in 17.3% upon 30days compared with 50% for HRP). Both enzyme electrodes showed a response time of 3s. The HRP based sensor was more sensitive to the presence of phenolic compounds acting as alternative electron donors, whereas the TOP based sensor was virtually interference free. Both HRP and TOP based electrodes were successfully tested in contact lens cleaning samples and real "spiked" samples from different sources such as tap water, milk and dairy products.
  •  
6.
  • Ciogli, Leonardo, et al. (author)
  • Highly Sensitive Hydrogen Peroxide Biosensor Based on Tobacco Peroxidase Immobilized on p-Phenylenediamine Diazonium Cation Grafted Carbon Nanotubes : Preventing Fenton-like Inactivation at Negative Potential
  • 2021
  • In: ChemElectroChem. - : Wiley. - 2196-0216. ; 8:13, s. 2495-2504
  • Journal article (peer-reviewed)abstract
    • Herein, we present a novel electrode platform for H2O2 detection based on the immobilization of recombinant Tobacco Peroxidase (r-TOP) onto graphite electrodes (G) modified with p-phenylenediamine (p-PD) diazonium cation grafted multi-walled carbon nanotubes (MWCNTs). The employment of both p-phenylenediamine moieties and covalent cross-linking by using glutaraldehyde allowed us to enhance the sensitivity, stability, and selectivity toward H2O2 detection, as well as preventing enzyme inactivation due to the electro-Fenton reaction. This reaction continuously produces hydroxyl radicals, whose high and unselective reactivity is likely to reduce drastically the operating life of the biosensor. The protection against the electro-Fenton reaction is mainly ascribed to a beneficial enzyme immobilization leading to a correct orientation achieved through cross-linking the enzyme in combination with interaction between the uncoupled -NH2 groups (mainly uncharged at pH 7, considering a pKa of 4.6) available on the electrode surface and the enzyme. In particular, the electrode based on the r-TOP/p-PD/MWCNTs/G platform showed a lower limit of detection of 1.8 μM H2O2, an extended linear range between 6 and 900 μM H2O2, as well as a significant increase in sensitivity (63.1±0.1 μA mM−1 cm−2) compared with previous work based on TOP. Finally, the r-TOP/p-PD/MWCNTs/G electrode was tested in several H2O2 spiked food samples as a screening analytical method for the detection of H2O2.
  •  
7.
  • Olloqui-Sariego, José Luis, et al. (author)
  • Influence of tryptophan mutation on the direct electron transfer of immobilized tobacco peroxidase
  • 2020
  • In: Electrochimica Acta. - : Elsevier BV. - 0013-4686. ; 351
  • Journal article (peer-reviewed)abstract
    • A major challenge in the design of electrochemical biodevices is to achieve fast rates of electron exchange between proteins and electrodes. In this work, we show that a significant increase in the direct electron transfer rate between a graphite electrode and Tobacco Peroxidase takes place when a surface exposed leucine, located in the vicinity of the heme pocket, is replaced by tryptophan. The analysis of the Fe(III)/Fe(II) voltammetric responses of native and mutated proteins, as a function of solution pH and temperature, leads to similar values of the reduction entropy and reorganization energy, but to a higher electronic coupling in the case of the mutant. In addition, the mutated and native proteins are shown to display similar electrocatalytic activities to reduce hydrogen peroxide at positive potentials, indicating that the molecular structure of the heme pocket is largely unaffected by the mutation.
  •  
8.
  • Olloqui-Sariego, José Luis, et al. (author)
  • Interprotein Coupling Enhances the Electrocatalytic Efficiency of Tobacco Peroxidase Immobilized at a Graphite Electrode.
  • 2015
  • In: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 87:21, s. 10807-10814
  • Journal article (peer-reviewed)abstract
    • Covalent immobilization of enzymes at electrodes via amide bond formation is usually carried out by a two-step protocol, in which surface carboxylic groups are first activated with the corresponding cross-coupling reagents and then reacted with protein amine groups. Herein, it is shown that a modification of the above protocol, involving the simultaneous incubation of tobacco peroxidase and the pyrolytic graphite electrode with the cross-coupling reagents produces higher and more stable electrocatalytic currents than those obtained with either physically adsorbed enzymes or covalently immobilized enzymes according to the usual immobilization protocol. The remarkably improved electrocatalytic properties of the present peroxidase biosensor that operates in the 0.3 V ≤ E ≤ 0.8 V (vs SHE) potential range can be attributed to both an efficient electronic coupling between tobacco peroxidase and graphite and to the formation of intra- and intermolecular amide bonds that stabilize the protein structure and improve the percentage of anchoring groups that provide an adequate orientation for electron exchange with the electrode. The optimized tobacco peroxidase sensor exhibits a working concentration range of 10-900 μM, a sensitivity of 0.08 A M(-1) cm(-2) (RSD 0.05), a detection limit of 2 μM (RSD 0.09), and a good long-term stability, as long as it operates at low temperature. These parameter values are among the best reported so far for a peroxidase biosensor operating under simple direct electron transfer conditions.
  •  
9.
  • Olloqui-Sariego, José Luis, et al. (author)
  • The Fe (III)/Fe(II) redox couple as a probe of immobilized tobacco peroxidase : Effect of the immobilization protocol
  • 2019
  • In: Electrochimica Acta. - : Elsevier BV. - 0013-4686. ; 299, s. 55-61
  • Journal article (peer-reviewed)abstract
    • Non-turnover voltammetry is a sensitive tool to characterize the electrochemical properties of redox proteins. However, the catalytically competent oxidation states of most peroxidases do not display the required electrochemical reversibility. In this report, we circumvent this limitation and exploit the voltammetric response associated with the Fe(III)/Fe(II) redox couple of tobacco peroxidase to probe the energetics and electronic connectivity of the heme pocket. We have applied this approach to rationalize the previously reported influence of the immobilization protocol on the electrocatalytic activity of tobacco peroxidase. To decouple proton and electron transfer steps, measurements have been carried out over the 3 ≤ pH ≤ 9 range and a 1e−/2H+ ladder scheme has been adopted for their analysis. At each pH, thermodynamic and kinetic parameters associated with the Fe(III)/Fe(II) redox conversion were determined as a function of temperature in the 0-30 °C range. Reduction entropies and reorganization energies displayed different values for covalently immobilized and physisorbed enzymes, pointing to a larger involvement of the solvent in the last case. These findings, together with a larger electronic coupling between the prosthetic group and the electrode, are indicative of a partial denaturation of the physisorbed enzymes as the origin of their lower electrocatalytic activity.
  •  
10.
  • Ramirez, Pablo, et al. (author)
  • Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase
  • 2008
  • In: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728. ; 1777:10, s. 1364-1369
  • Journal article (peer-reviewed)abstract
    • Direct electron transfer (DET) from bare spectrographic graphite (SPGE) or 3-mercaptopropionic acid-modified gold (MPA-gold) electrodes to Trachyderma tsunodae bilirubin oxidase (BOD) was studied under anaerobic and aerobic conditions by cyclic voltammetry and chronoamperometry. On cyclic voltammograms nonturnover Faradaic signals with midpoint potentials of about 700 mV and 400 mV were clearly observed corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively. The immobilized BOD was differently oriented on the two electrodes and its catalysis of O-2-electroreduction was also massively different. On SPGE, where most of the enzyme was oriented with the T1 copper site proximal to the carbon with a quite slow ET process, well-pronounced DET-bioelectroreduction of O-2 was observed, starting already at > 700 mV vs. NHE. In contrast, on MPA-gold most of the enzyme was oriented with its T2/T3 copper cluster proximal to the metal. Indeed, there was little DET-based catalysis of O-2-electroreduction, even though the ET between the MPA-gold and the T2/T3 copper cluster of BOD was similar to that observed for the T1 site at SPGE. When BOD actively catalyzes the O-2-electroreduction, the redox potential of its T1 site is 690 mV vs. NHE and that of one of its T2/T3 copper centers is 390 mV vs. NHE. The redox potential of the T2/T3 copper cluster of a resting form of BOD is suggested to be about 360 mV vs. NHE. These values, combined with the observed biocatalytic behavior, strongly suggest an uphill intra-molecular electron transfer from the T1 site to the T2/T3 cluster during the catalytic turnover of the enzyme. (C) 2008 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view