SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrieux Joris) "

Sökning: WFRF:(Andrieux Joris)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boudry-Labis, Elise, et al. (författare)
  • A novel microdeletion syndrome at 9q21.13 characterised by mental retardation, speech delay, epilepsy and characteristic facial features
  • 2013
  • Ingår i: European Journal of Medical Genetics. - : Elsevier BV. - 1769-7212 .- 1878-0849. ; 56:3, s. 163-170
  • Tidskriftsartikel (refereegranskat)abstract
    • The increased use of array-CGH and SNP-arrays for genetic diagnosis has led to the identification of new microdeletion/microduplication syndromes and enabled genotype-phenotype correlations to be made. In this study, nine patients with 9q21 deletions were investigated and compared with four previously Decipher reported patients. Genotype-phenotype comparisons of 13 patients revealed several common major characteristics including significant developmental delay, epilepsy, neuro-behavioural disorders and recognizable facial features including hypertelorism, feature-less philtrum, and a thin upper lip. The molecular investigation identified deletions with different breakpoints and of variable lengths, but the 750 kb smallest overlapping deleted region includes four genes. Among these genes, RORB is a strong candidate for a neurological phenotype. To our knowledge, this is the first published report of 9q21 microdeletions and our observations strongly suggest that these deletions are responsible for a new genetic syndrome characterised by mental retardation with speech delay, epilepsy, autistic behaviour and moderate facial dysmorphy. 
  •  
2.
  • Becker, Kerstin, et al. (författare)
  • De novo microdeletions of chromosome 6q14.1-q14.3 and 6q12.1-q14.1 in two patients with intellectual disability : further delineation of the 6q14 microdeletion syndrome and review of the literature
  • 2012
  • Ingår i: European Journal of Medical Genetics. - : Elsevier BV. - 1769-7212 .- 1878-0849. ; 55:8-9, s. 490-497
  • Tidskriftsartikel (refereegranskat)abstract
    • Interstitial 6q deletions can cause a variable phenotype depending on the size and location of the deletion. 6q14 deletions have been associated with intellectual disability and a distinct pattern of minor anomalies, including upslanted palpebral fissures with epicanthal folds, a short nose with broad nasal tip, anteverted nares, long philtrum, and thin upper lip. In this study we describe two patients with overlapping 6q14 deletions presenting with developmental delay and characteristic dysmorphism. Molecular karyotyping using array CGH analysis revealed a de novo 8.9 Mb deletion at 6q14.1-q14.3 and a de novo 11.3 Mb deletion at 6q12.1-6q14.1, respectively. We provide a review of the clinical features of twelve other patients with 6q14 deletions detected by array CGH analysis. By assessing all reported data we could not identify a single common region of deletion. Possible candidate genes in 6q14 for intellectual disability might be FILIP1, MYO6, HTR1B, and SNX14.
  •  
3.
  • Demeer, Benedicte, et al. (författare)
  • Duplication 16p13.3 and the CREBBP gene : Confirmation of the phenotype
  • 2013
  • Ingår i: European Journal of Medical Genetics. - : Elsevier BV. - 1769-7212 .- 1878-0849. ; 56:1, s. 26-31
  • Tidskriftsartikel (refereegranskat)abstract
    • The introduction of molecular karyotyping technologies into the diagnostic work-up of patients with congenital disorders permitted the identification and delineation of novel microdeletion and microduplication syndromes. Interstitial 16p13.3 duplication, encompassing the CREBBP gene, which is mutated or deleted in the Rubinstein-Taybi syndrome, have been proposed to cause a recognisable syndrome with variable intellectual disability, normal growth, mild facial dysmorphism, mild anomalies of the extremities, and occasional findings such as developmental defects of the heart, genitalia, palate or the eyes. We here report the phenotypic and genotypic delineation of 9 patients carrying a submicroscopic 16p13.3 duplication, including the smallest 16p13.3 duplication reported so far. Careful clinical assessment confirms the distinctive clinical phenotype and also defines frequent associated features : marked speech problems, frequent ocular region involvement with upslanting of the eyes, narrow palpebral fissures, ptosis and strabismus, frequent proximal implantation of thumbs, cleft palate/bifid uvula and inguinal hernia. It also confirms that CREBBP is the critical gene involved in the duplication 16p13.3 syndrome.
  •  
4.
  • Depienne, Christel, et al. (författare)
  • Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU
  • 2017
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 136:4, s. 463-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.
  •  
5.
  • Halgren, Christina, et al. (författare)
  • Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B
  • 2012
  • Ingår i: Clinical Genetics. - : John Wiley & Sons. - 0009-9163 .- 1399-0004. ; 82:3, s. 248-255
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B. Corpus callosum abnormalities are common brain malformations with a wide clinical spectrum ranging from severe intellectual disability to normal cognitive function. The etiology is expected to be genetic in as much as 30-50% of the cases, but the underlying genetic cause remains unknown in the majority of cases. By next-generation mate-pair sequencing we mapped the chromosomal breakpoints of a patient with a de novo balanced translocation, t(1;6)(p31;q25), agenesis of corpus callosum (CC), intellectual disability, severe speech impairment, and autism. The chromosome 6 breakpoint truncated ARID1B which was also truncated in a recently published translocation patient with a similar phenotype. Quantitative polymerase chain reaction (Q-PCR) data showed that a primer set proximal to the translocation showed increased expression of ARID1B, whereas primer sets spanning or distal to the translocation showed decreased expression in the patient relative to a non-related control set. Phenotype-genotype comparison of the translocation patient to seven unpublished patients with various sized deletions encompassing ARID1B confirms that haploinsufficiency of ARID1B is associated with CC abnormalities, intellectual disability, severe speech impairment, and autism. Our findings emphasize that ARID1B is important in human brain development and function in general, and in the development of CC and in speech development in particular.
  •  
6.
  • Popovici, Cornel, et al. (författare)
  • Whole ARX Gene Duplication is Compatible With Normal Intellectual Development
  • 2014
  • Ingår i: American Journal of Medical Genetics. Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 164A:9, s. 2324-2327
  • Tidskriftsartikel (refereegranskat)abstract
    • We report here on four males from three families carrying de novo or inherited small Xp22.13 duplications including the ARX gene detected by chromosomal microarray analysis (CMA). Two of these males had normal intelligence. Our report suggests that, unlike other XLMR genes like MECP2 and FMR1, the presence of an extra copy of the ARX gene may not be sufficient to perturb its developmental functions. ARX duplication does not inevitably have detrimental effects on brain development, in contrast with the effects of ARX haploinsufficiency. The abnormal phenotype ascribed to the presence of an extra copy in some male patients may have resulted from the effect of another, not yet identified, chromosomal or molecular anomaly, alone or in association with ARX duplication.
  •  
7.
  • Thuresson, Ann-Charlotte, et al. (författare)
  • Whole-gene duplication of SCN2A and SCN3A is associated with neonatal seizures and a normal intellectual development
  • 2017
  • Ingår i: Clinical Genetics. - : Wiley. - 0009-9163 .- 1399-0004. ; 91:1, s. 106-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Duplications at 2q24.3 encompassing the voltage-gated sodium channel gene cluster are associated with early onset epilepsy. All cases described in the literature have presented in addition with different degrees of intellectual disability, and have involved neighbouring genes in addition to the sodium channel gene cluster. Here we report eight new cases with overlapping duplications at 2q24 ranging from 0.05 Mb to 7.63 Mb in size. Taken together with the previously reported cases, our study suggests that having an extra copy of SCN2A has an effect on epilepsy pathogenesis, causing benign familial infantile seizures which eventually disappear at the age of one to two years.. However, the number of copies of SCN2A does not appear to have an effect on cognitive outcome.
  •  
8.
  • Wang, Peter, et al. (författare)
  • Genotype-phenotype analysis of 18q12.1-q12.2 copy number variation in autism
  • 2013
  • Ingår i: European Journal of Medical Genetics. - : Elsevier BV. - 1769-7212 .- 1878-0849. ; 56:8, s. 420-425
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism Spectrum Disorders (ASD) are complex neurodevelopmental conditions characterized by delays in social interactions and communication as well as displays of restrictive/repetitive interests. DNA copy number variants have been identified as a genomic susceptibility factor in ASDs and imply significant genetic heterogeneity. We report a 7-year-old female with ADOS-G and ADI-R confirmed autistic disorder harbouring a de novo 4 Mb duplication (18q12.1). Our subject displays severely deficient expressive language, stereotypic and repetitive behaviours, mild intellectual disability (ID), focal epilepsy, short stature and absence of significant dysmorphic features. Search of the PubMed literature and DECIPHER database identified 4 additional cases involving 18q12.1 associated with autism and/or ID that overlap our case: one duplication, two deletions and one balanced translocation. Notably, autism and ID are seen with genomic gain or loss at 18q12.1, plus epilepsy and short stature in duplication cases, and hypotonia and tall stature in deletion cases. No consistent dysmorphic features were noted amongst the reviewed cases. We review prospective ASD/ID candidate genes integral to 18q12.1, including those coding for the desmocollin/desmoglein cluster, ring finger proteins 125 and 138, trafficking protein particle complex 8 and dystrobrevin-alpha. The collective clinical and molecular features common to microduplication 18q12.1 suggest that dosage-sensitive, position or contiguous gene effects may be associated in the etiopathogenesis of this autism-ID-epilepsy syndrome. 
  •  
9.
  • Wentzel, Christian, et al. (författare)
  • Genomic and clinical characteristics of six patients with partially overlapping interstitial deletions at 10p12p11
  • 2011
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 19:9, s. 959-964
  • Tidskriftsartikel (refereegranskat)abstract
    • With the clinical implementation of genomic microarrays, the detection of cryptic unbalanced rearrangements in patients with syndromic developmental delay has improved considerably. Here we report the molecular karyotyping and phenotypic description of six new unrelated patients with partially overlapping microdeletions at 10p12.31p11.21 ranging from 1.0 to 10.6 Mb. The smallest region of overlap is 306 kb, which includes WAC gene, known to be associated with microtubule function and to have a role in cell division. Another patient has previously been described with a 10Mb deletion, partially overlapping with our six patients. All seven patients have developmental delay and a majority of the patients have abnormal behaviour and dysmorphic features, including bulbous nasal tip, deep set eyes, synophrys/thick eyebrows and full cheeks, whereas other features varied. All patients also displayed various visual impairments and six out of seven patients had cardiac malformations. Taken together with the previously reported patient, our study suggests that the detected deletions may represent a new contiguous gene syndrome caused by dosage-sensitive genes that predispose to developmental delay.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy