SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrzejewska Ewa A.) "

Sökning: WFRF:(Andrzejewska Ewa A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axell, Emil, et al. (författare)
  • The role of shear forces in primary and secondary nucleation of amyloid fibrils
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 1091-6490. ; 121:25, s. 2322572121-2322572121
  • Tidskriftsartikel (refereegranskat)abstract
    • Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for Aβ42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.
  •  
2.
  • Dear, Alexander J., et al. (författare)
  • Aβ Oligomer Dissociation Is Catalyzed by Fibril Surfaces
  • Ingår i: ACS Chemical Neuroscience. - 1948-7193.
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligomeric assemblies consisting of only a few protein subunits are key species in the cytotoxicity of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Their lifetime in solution and abundance, governed by the balance of their sources and sinks, are thus important determinants of disease. While significant advances have been made in elucidating the processes that govern oligomer production, the mechanisms behind their dissociation are still poorly understood. Here, we use chemical kinetic modeling to determine the fate of oligomers formed in vitro and discuss the implications for their abundance in vivo. We discover that oligomeric species formed predominantly on fibril surfaces, a broad class which includes the bulk of oligomers formed by the key Alzheimer's disease-associated Aβ peptides, also dissociate overwhelmingly on fibril surfaces, not in solution as had previously been assumed. We monitor this "secondary nucleation in reverse" by measuring the dissociation of Aβ42 oligomers in the presence and absence of fibrils via two distinct experimental methods. Our findings imply that drugs that bind fibril surfaces to inhibit oligomer formation may also inhibit their dissociation, with important implications for rational design of therapeutic strategies for Alzheimer's and other amyloid diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy