SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Angot H.) "

Sökning: WFRF:(Angot H.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shupe, M. D., et al. (författare)
  • Overview of the MOSAiC expedition : Atmosphere
  • 2022
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
  •  
2.
  • Sprovieri, F., et al. (författare)
  • Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network
  • 2016
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:18, s. 11915-11935
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
  •  
3.
  • Benavent, N., et al. (författare)
  • Substantial contribution of iodine to Arctic ozone destruction
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15, s. 770-773
  • Tidskriftsartikel (refereegranskat)abstract
    • Unlike bromine, the effect of iodine chemistry on the Arctic surface ozone budget is poorly constrained. We present ship-based measurements of halogen oxides in the high Arctic boundary layer from the sunlit period of March to October 2020 and show that iodine enhances springtime tropospheric ozone depletion. We find that chemical reactions between iodine and ozone are the second highest contributor to ozone loss over the study period, after ozone photolysis-initiated loss and ahead of bromine.
  •  
4.
  • Angot, H., et al. (författare)
  • Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models
  • 2016
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:16, s. 10735-10763
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission). Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011-2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and inter-annual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes.
  •  
5.
  • Dastoor, Ashu, et al. (författare)
  • Arctic mercury cycling
  • 2022
  • Ingår i: Nature Reviews Earth & Environment. - : Springer Nature. - 2662-138X. ; 3:4, s. 270-286
  • Forskningsöversikt (refereegranskat)abstract
    • Anthropogenic mercury (Hg) emissions have driven marked increases in Arctic Hg levels,which are now being impacted by regional warming, with uncertain ecological consequences. This Review presents a comprehensive assessment of the present-day total Hg mass balance in the Arctic. Over 98% of atmospheric Hg is emitted outside the region and is transported to the Arctic via long-range air and ocean transport. Around two thirds of this Hg is deposited in terrestrial ecosystems, where it predominantly accumulates in soils via vegetation uptake. Rivers and coastal erosion transfer about 80 Mg year−1 of terrestrial Hg to the Arctic Ocean, in approximate balance with modelled net terrestrial Hg deposition in the region. The revised Arctic Ocean Hg mass balance suggests net atmospheric Hg deposition to the ocean and that Hg burial in inner-shelf sediments is underestimated (up to >100%), needing seasonal observations of sediment-oceanHg exchange. Terrestrial Hg mobilization pathways from soils and the cryosphere (permafrost, ice, snow and glaciers) remain uncertain. Improved soil, snowpack and glacial Hg inventories, transfer mechanisms of riverine Hg releases under accelerated glacier and soil thaw, coupled atmosphere– terrestrial modelling and monitoring of Hg in sensitive ecosystems such as fjords can help toanticipate impacts on downstream Arctic ecosystems.
  •  
6.
  • Song, S., et al. (författare)
  • Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:12, s. 7103-7125
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg-0 observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg-0 and wet deposition measurements. The optimized global mercury emission to the atmosphere is 5.8 Gg yr(-1). The ocean accounts for 3.2 Gg yr(-1) (55 % of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg-0. The optimized Asian anthropogenic emission of Hg-0 (gas elemental mercury) is 650-1770 Mg yr(-1), higher than its bottom-up estimates (550-800 Mg yr(-1)). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.
  •  
7.
  • Spolaor, A., et al. (författare)
  • Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:20, s. 13325-13339
  • Tidskriftsartikel (refereegranskat)abstract
    • Sunlit snow is highly photochemically active and plays a key role in the exchange of gas phase species between the cryosphere and the atmosphere. Here, we investigate the behaviour of two selected species in surface snow: mercury (Hg) and iodine (I). Hg can deposit year-round and accumulate in the snowpack. However, photo-induced re-emission of gas phase Hg from the surface has been widely reported. Iodine is active in atmospheric new particle formation, especially in the marine boundary layer, and in the destruction of atmospheric ozone. It can also undergo photochemical re-emission. Although previous studies indicate possible post-depositional processes, little is known about the diurnal behaviour of these two species and their interaction in surface snow. The mechanisms are still poorly constrained, and no field experiments have been performed in different seasons to investigate the magnitude of re-emission processes Three sampling campaigns conducted at an hourly resolution for 3 d each were carried out near Ny-Alesund (Svalbard) to study the behaviour of mercury and iodine in surface snow under different sunlight and environmental conditions (24 h darkness, 24 h sunlight and day-night cycles). Our results indicate a different behaviour of mercury and iodine in surface snow during the different campaigns. The day-night experiments demonstrate the existence of a diurnal cycle in surface snow for Hg and iodine, indicating that these species are indeed influenced by the daily solar radiation cycle. Differently, bromine did not show any diurnal cycle. The diurnal cycle also disappeared for Hg and iodine during the 24 h sunlight period and during 24 h darkness experiments supporting the idea of the occurrence (absence) of a continuous recycling or exchange at the snow-air interface. These results demonstrate that this surface snow recycling is seasonally dependent, through sunlight. They also highlight the non-negligible role that snowpack emissions have on ambient air concentrations and potentially on iodine-induced atmospheric nucleation processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy