SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ankerfors M.) "

Sökning: WFRF:(Ankerfors M.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Fernández, A., et al. (författare)
  • Effects of ionizing radiation in ethylene-vinyl alcohol copolymers and in composites containing microfibrillated cellulose
  • 2008
  • Ingår i: Journal of Applied Polymer Science. - : Wiley. - 0021-8995 .- 1097-4628. ; 109:1, s. 126-134
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports on the effect of gamma radiation on morphological, thermal, and water barrier properties of pure ethylene vinyl alcohol copolymers (EVOH29 and EVOH44) and its biocomposites with the nanofiller microfibrillated cellulose (2 wt%). Added microfibrillated cellulose (MFC) preserved the transparency of EVOH films but led to a decrease in water barrier properties. Gamma irradiation at low (30 kGy) and high doses (60 kGy) caused some irreversible changes in the phase morphology of EVOH29 and EVOH44 copolymers that could be associated to crosslinking and other chemical alterations. Additionally, the EVOH copolymers and the EVOH composites reduced the number of hygroscopic hydroxyl functionalities during the irradiation processing and novel carbonyl based chemistry was, in turn, detected. As a result of the above alterations, the water barrier properties of both neat materials and composites irradiated at low doses were notably enhanced, counteracting the detrimental effect on water barrier of adding MFC to the EVOH matrix. © 2008 Wiley Periodicals, Inc.
  •  
5.
  • Lôpez-Rubio, A., et al. (författare)
  • Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose
  • 2007
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 68:4, s. 718-727
  • Tidskriftsartikel (refereegranskat)abstract
    • This work describes a novel approach to produce amylopectin films with enhanced properties by the addition of micro fibrillated cellulose (MFC). Aqueous dispersions of gelatinized amylopectin, glycerol (0-38 wt%) and MFC (0-10 wt%) were cast at ambient temperature and 50% relative humidity and, after 10 days of storage, the tensile properties were investigated. The structure of the composite films was revealed by optical, atomic force and transmission electron microscopy. The moisture content was determined by thermogravimetry and the temperature-dependent film rigidity was measured by thermal mechanical analysis. Synchrotron simultaneous small- and wide-angle X-ray measurements revealed that the solutions had to be heated to above 85 degrees C in order to achieve complete gelatinization. Optical microscopy and atomic force microscopy revealed uniformly distributed MFC aggregates in the films, with a length of 10-90 mu m and a width spanning from a few hundred nanometers to several microns. Transmission electron microscopy showed that, in addition to aggregates, single MFC microfibrils were also embedded in the amylopectin matrix. It was impossible to cast antylopectin films of sufficient quality with less than 38 wt% glycerol. However, when MFC was added it was possible to produce high quality films even without glycerol. The film without glycerol was stiff and strong but not brittle. It was suggested that this remarkable effect was due to its comparatively high moisture content. Consequently MFC acted both as a "conventional" reinforcement because of its fibrous structure and also indirectly as a plasticiser because its presence led to an increase in film moisture content.
  •  
6.
  •  
7.
  •  
8.
  • Nordqvist, David, et al. (författare)
  • Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose
  • 2007
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 8:8, s. 2398-2403
  • Tidskriftsartikel (refereegranskat)abstract
    • This report presents a new route to enhance the wet properties of chitosan-acetic-acid-salt films using microfibrillated cellulose (MFC). The enhancement makes it easier to form chitosan-acetic-acid-salt films into various shapes at room temperature in the wet state. Chitosan with MFC was compared with the well-known buffer treatment. It was observed that films containing 5 wt % MFC were visually identical to the buffered/unbuffered films without MFC. Field-emission scanning electron microscopy indicated that MFC formed a network with uniformly distributed fibrils and fibril bundles in the chitosan matrix. The addition of MFC reduced the risk of creases and deformation in the wet state because of a greater wet stiffness. The wet films containing MFC were also extensible. Although the stiffness, strength and extensibility were highest for the buffered films, the wet strength of the MFC-containing unbuffered films was sufficient for wet forming operations. The effects of MFC on the mechanical properties of the dry chitosan films were small or absent. It was concluded that the addition of MFC is an acceptable alternative to buffering for shaping chitosan films/products in the wet state. The advantages are that the "extra" processing step associated with buffering is unnecessary and that the film matrix remains more water-soluble.
  •  
9.
  • Pääkkö, M., et al. (författare)
  • Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels
  • 2007
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 8:6, s. 1934-1941
  • Tidskriftsartikel (refereegranskat)abstract
    • Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G' upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) C-13 NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5-6 nm and one with lateral dimensions of about 10-20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125-5.9% w/w, G' ranging from 1.5 Pa to 10(5) Pa. The maximum G' was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G' scales with concentration with the power of approximately three. The described preparation method of MFC allows control over the final properties that opens novel applications in materials science, for example, as reinforcement in composites and as templates for surface modification.
  •  
10.
  • Ankerfors, M., et al. (författare)
  • The use of microfibrillated cellulose in high filler fine papers
  • 2013
  • Ingår i: Pap. Conf. Trade Show, PaperCon. - 9781627489669 ; , s. 1129-1132
  • Konferensbidrag (refereegranskat)abstract
    • The field of communication, printing and writing papers has become an increasingly competitive field during the latest years as the market demand of printing and writing papers and newsprint has finally started to decline in the developed economies. One obvious approach to stay competitive is to increase the filler content of such papers. High filler paper is not a new idea and numerous approaches have been tested over the years to produce such papers. In order to reach industrial implementation, pilot-scale research and development under industrial conditions is necessary as a step after laboratory studies. Therefore an environment has been developed in order to perform projects targeting existing technologies for high filler applications as well as the new possibilities incurred by e.g. microfibrillated cellulose.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy