SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Anoosheh Saber) "

Sökning: WFRF:(Anoosheh Saber)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Debar, L., et al. (författare)
  • NUDT6 and NUDT9, two mitochondrial members of the NUDIX family, have distinct hydrolysis activities
  • 2023
  • Ingår i: Mitochondrion. - : Elsevier. - 1567-7249 .- 1872-8278. ; 71, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mito-chondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6-and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the res-piratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.
  •  
2.
  • Ebenwaldner, Carmen, et al. (författare)
  • 14-3-3 activated bacterial exotoxins AexT and ExoT share actin and the SH2 domains of CRK proteins as targets for ADP-ribosylation
  • 2022
  • Ingår i: Pathogens. - : MDPI. - 2076-0817. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial exotoxins with ADP-ribosyltransferase activity can be divided into distinct clades based on their domain organization. Exotoxins from several clades are known to modify actin at Arg177; but of the 14-3-3 dependent exotoxins only Aeromonas salmonicida exoenzyme T (AexT) has been reported to ADP-ribosylate actin. Given the extensive similarity among the 14-3-3 dependent exotoxins, we initiated a structural and biochemical comparison of these proteins. Structural modeling of AexT indicated a target binding site that shared homology with Pseudomonas aeruginosa Exoenzyme T (ExoT) but not with Exoenzyme S (ExoS). Biochemical analyses confirmed that the catalytic activities of both exotoxins were stimulated by agmatine, indicating that they ADP-ribosylate arginine residues in their targets. Side-by-side comparison of target protein modification showed that AexT had activity toward the SH2 domain of the Crk-like protein (CRKL), a known target for ExoT. We found that both AexT and ExoT ADP-ribosylated actin and in both cases, the modification compromised actin polymerization. Our results indicate that AexT and ExoT are functional homologs that affect cytoskeletal integrity via actin and signaling pathways to the cytoskeleton.
  •  
3.
  • Fietze, Tobias, et al. (författare)
  • HUG Domain Is Responsible for Active Dimer Stabilization in an NrdJd Ribonucleotide Reductase
  • 2022
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 61:15, s. 1633-1641
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides. The catalytic activity of most RNRs depends on the formation of a dimer of the catalytic subunits. The active site is located at the interface, and part of the substrate binding site and regulatory mechanisms work across the subunit in the dimer. In this study, we describe and characterize a novel domain responsible for forming the catalytic dimer in several class II RNRs. The 3D structure of the class II RNR from Rhodobacter sphaeroides reveals a so far undescribed α-helical domain in the dimer interface, which is embracing the other subunit. Genetic removal of this HUG domain leads to a severe reduction of activity paired with reduced dimerization capability. In comparison with other described RNRs, the enzyme with this domain is less dependent on the presence of nucleotides to act as allosteric effectors in the formation of dimers. The HUG domain appears to serve as an interlock to keep the dimer intact and functional even at low enzyme and/or effector concentrations. 
  •  
4.
  • Tükenmez, Hasan, 1987-, et al. (författare)
  • Mycobacterium tuberculosis Rv3160c is a TetR-like transcriptional repressor that regulates expression of the putative oxygenase Rv3161c
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a major health threat listed among the top 10 causes of death worldwide. Treatment of multidrug-resistant Mtb requires use of additional second-line drugs that prolong the treatment process and result in higher death rates. Our team previously identified a 2-pyridone molecule (C10) that blocks tolerance to the first-line drug isoniazid at C10 concentrations that do not inhibit bacterial growth. Here, we discovered that the genes rv3160c and rv3161c are highly induced by C10, which led us to investigate them as potential targets. We show that Rv3160c acts as a TetR-like transcriptional repressor binding to a palindromic sequence located in the rv3161c promoter. We also demonstrate that C10 interacts with Rv3160c, inhibiting its binding to DNA. We deleted the rv3161c gene, coding for a putative oxygenase, to investigate its role in drug and stress sensitivity as well as C10 activity. This Δrv3161c strain was more tolerant to isoniazid and lysozyme than wild type Mtb. However, this tolerance could still be blocked by C10, suggesting that C10 functions independently of Rv3161c to influence isoniazid and lysozyme sensitivity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy