SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Antonopoulou Io) "

Sökning: WFRF:(Antonopoulou Io)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Antonopoulou, Io, 1989-, et al. (författare)
  • CO2 to Methanol: A Highly Efficient Enzyme Cascade
  • 2022. - 1
  • Ingår i: Multienzymatic Assemblies. - New York, NY : Springer Nature. ; , s. 317-344
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon dioxide (CO2) has been increasingly regarded not only as a greenhouse gas but also as a valuable feedstock for carbon-based chemicals. In particular, biological approaches have drawn attention as models for the production of value-added products, as CO2 conversion serves many natural processes. Enzymatic CO2 reduction in vitro is a very promising route to produce fossil free and bio-based fuel alternatives, such as methanol. In this chapter, the advances in constructing competitive multi-enzymatic systems for the reduction of CO2 to methanol are discussed. Different integrated methods are presented, aiming to address technological challenges, such as the cost effectiveness, need for material regeneration and reuse and improving product yields of the process.
  •  
3.
  • Antonopoulou, Io, 1989- (författare)
  • Development of biocatalytic processes for selective antioxidant production
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Feruloyl esterases (FAEs, EC 3.1.1.73) represent a subclass of carboxylic acid esterases that under normal conditions catalyze the hydrolysis of the ester bond between hydroxycinnamic acids (ferulic acid, sinapic acid, caffeic acid, p-coumaric acid) and sugar residues in plant cell walls. Based on their specificity towards monoferulates and diferulates, substitutions on the phenolic ring and on their amino acid sequence identity, they have been classified into four types (A-D) while phylogenetic analysis has resulted in classification into thirteen subfamilies (SF1-13). Under low water content, these enzymes are able to catalyze the esterification of hydroxycinnamic acids or the transesterification of their esters (donor) with alcohols or sugars (acceptor) resulting in compounds with modified lipophilicity, having a great potential for use in the tailor-made modification of natural antioxidants for cosmetic, cosmeceutical and pharmaceutical industries. The work described in this thesis focused on the selection,characterization and application of FAEs for the synthesis of bioactive esters with antioxidant activity in non-conventional media. The basis of the current classification systems was investigated in relation with the enzymes’ synthetic and hydrolytic abilities while the developed processes were evaluated for their efficiency and sustainability.Paper I was dedicated to the screening and evaluation of the synthetic abilities of 28 fungal FAEs using acceptors of different lipophilicity at fixed conditions in detergentless microemulsions. It was revealed that FAEs classified in phylogenetic subfamilies related to acetyl xylan esterases (SF5 and 6) showed increased transesterification rates and selectivity. In general, FAEs showed preference on more hydrophilic alcohol acceptors and in descending order to glycerol > 1-butanol > prenol. Homology modeling and small molecule docking simulations were employed as tools for the identification of a potential relationship between the predicted surface and active site properties of selected FAEs and the transesterification selectivity.Papers II- IV focused on the characterization of eight promising FAEs and the optimization of reaction conditions for the synthesis of two bioactive esters (prenyl ferulate and L-arabinose ferulate) in detergentless microemulsions. The effect of the medium composition, the donor and acceptor concentration, the enzyme load, the pH, the temperature and the agitation on the transesterification yield and selectivity were investigated. It was observed that the acceptor concentration and enzyme load were crucial parameters for selectivity. Fae125 (Type A, SF5) iiexhibited highest prenyl ferulate yield (81.1%) and selectivity (4.685) converting 98.5% of VFA to products after optimization at 60 mM VFA, 1.5 M prenol, 0.04 mg FAE mL-1, 40oC, 24 h, 53.4:43.4:3.2 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0. On the other hand, FaeA1 (Type A, SF5) showed highest L-arabinose ferulate yield (52.2 %) and selectivity (1.120) at 80 mM VFA, 55 mM L-arabinose, 0.02 mg FAE mL-1, 50oC, 8 h, 19.8: 74.7: 5.5 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0.In paper V, the effect of reaction media on the enzyme stability and transesterification yield and selectivity was studied in different solvents for the synthesis of two bioactive esters: prenyl ferulate and L-arabinose ferulate. The best performing enzyme (Fae125) was used in the optimization of reaction conditions in the best solvent (n-hexane) via response surface methodology. Both bioconversions were best described by a two-factor interaction model while optimal conditions were determined as the ones resulting in highest yield and selectivity.Highest prenyl ferulate yield (87.5%) and selectivity (7.616) were observed at 18.56 mM prenol mM-1VFA, 0.04 mg FAE mL-1, 24.5 oC, 24.5 h, 91.8: 8.2 v/v n-hexane: 100 mM sodium acetate pH 4.7. Highest L-arabinose ferulate yield (56.2%) and selectivity (1.284) were observed at 2.96 mM L-arabinose mM-1VFA, 0.02 mg FAE mL-1, 38.9 oC, 12 h, 90.5: 5.0: 4.5 v/v/v n-hexane: dimethyl sulfoxide: 100 mM sodium acetate pH 4.7. The enzyme could be reused for six consecutive reaction cycles maintaining 66.6% of its initial synthetic activity. The developed bioconversions showed exceptional biocatalyst productivities (> 300 g product g-1FAE) and the waste production was within the range of pharmaceutical processes.Paper VI focused on the investigation of the basis of the type A classification of a well-studied FAE from Aspergillus niger(AnFaeA) by comparing its activity towards methyl and arabinose hydroxycinnamic acid esters. For this purpose, L-arabinose ferulateand caffeate were synthesized enzymatically. kcat/Kmratios revealed that AnFaeA hydrolyzed arabinose ferulate 1600 times and arabinose caffeate 6.5 times more efficiently than methyl esters. This study demonstrated that short alkyl chain hydroxycinnamate esters which are used nowadays for FAE classification can lead to activity misclassification, while L-arabinose esters could potentially substitute synthetic esters in classification describing more adequately the enzyme specificitiesin the natural environment.
  •  
4.
  • Antonopoulou, Io, et al. (författare)
  • Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application
  • 2016
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 100:15, s. 6519-6543
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry
  •  
5.
  • Antonopoulou, Io, 1989-, et al. (författare)
  • Ferulic Acid From Plant Biomass: A Phytochemical With Promising Antiviral Properties
  • 2022
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media S.A.. - 2296-861X. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Plant biomass is a magnificent renewable resource for phytochemicals that carry bioactive properties. Ferulic acid (FA) is a hydroxycinnamic acid that is found widespread in plant cell walls, mainly esterified to polysaccharides. It is well known of its strong antioxidant activity, together with numerous properties, such as antimicrobial, anti-inflammatory and neuroprotective effects. This review article provides insights into the potential for valorization of FA as a potent antiviral agent. Its pharmacokinetic properties (absorption, metabolism, distribution and excretion) and the proposed mechanisms that are purported to provide antiviral activity are presented. Novel strategies on extraction and derivatization routes, for enhancing even further the antiviral activity of FA and potentially favor its metabolism, distribution and residence time in the human body, are discussed. These routes may lead to novel high-added value biorefinery pathways to utilize plant biomass toward the production of nutraceuticals as functional foods with attractive bioactive properties, such as enhancing immunity toward viral infections.
  •  
6.
  • Antonopoulou, Io, 1989-, et al. (författare)
  • Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds
  • 2022
  • Ingår i: Computational and Structural Biotechnology Journal. - : Elsevier. - 2001-0370. ; 20, s. 1306-1344
  • Forskningsöversikt (refereegranskat)abstract
    • The emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in a long pandemic, with numerous cases and victims worldwide and enormous consequences on social and economic life. Although vaccinations have proceeded and provide a valuable shield against the virus, the approved drugs are limited and it is crucial that further ways to combat infection are developed, that can also act against potential mutations. The main protease (Mpro) of the virus is an appealing target for the development of inhibitors, due to its importance in the viral life cycle and its high conservation among different coronaviruses. Several compounds have shown inhibitory potential against Mpro, both in silico and in vitro, with few of them also having entered clinical trials. These candidates include: known drugs that have been repurposed, molecules specifically designed based on the natural substrate of the protease or on structural moieties that have shown high binding affinity to the protease active site, as well as naturally derived compounds, either isolated or in plant extracts. The aim of this work is to collectively present the results of research regarding Mpro inhibitors to date, focusing on the function of the compounds founded by in silico simulations and further explored by in vitro and in vivo assays. Creating an extended portfolio of promising compounds that may block viral replication by inhibiting Mpro and by understanding involved structure–activity relationships, could provide a basis for the development of effective solutions against SARS-CoV-2 and future related outbreaks.
  •  
7.
  • Antonopoulou, Io, et al. (författare)
  • Optimization of enzymatic synthesis of l-arabinose ferulate catalyzed by feruloyl esterases from Myceliophthora thermophila in detergentless microemulsions and assessment of its antioxidant and cytotoxicity activities
  • 2018
  • Ingår i: Process Biochemistry. - : Elsevier. - 1359-5113 .- 1873-3298. ; 65, s. 100-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The feruloyl esterases FaeA1, FaeA2, FaeB1, FaeB2 from Myceliophthora thermophila C1 and MtFae1a from M. thermophila ATCC 42464 were used as biocatalysts for the transesterification of vinyl ferulate (VFA) with l-arabinose in detergentless microemulsions. The effect of parameters such as the microemulsion composition, the substrate concentration, the enzyme load, the pH, the temperature and the agitation was investigated. FaeA1 offered the highest transesterification yield (52.2 ± 4.3%) after 8 h of incubation at 50 °C using 80 mM VFA, 55 mM l-arabinose and 0.02 mg FAE mL−1 in a mixture comprising of 19.8: 74.7: 5.5 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0. The ability of l-arabinose ferulate (AFA) to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals was significant (IC50 386.5 μM). AFA was not cytotoxic even at high concentrations (1 mM) however was found to be pro-oxidant at concentrations higher than 20 μM when the antioxidant activity was determined with the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay in human skin fibroblasts.
  •  
8.
  • Antonopoulou, Io, 1989-, et al. (författare)
  • Optimized Enzymatic Synthesis of Feruloyl Derivatives Catalyzed by Three Novel Feruloyl Esterases from Talaromyces wortmannii in Detergentless Microemulsions
  • 2018
  • Ingår i: Computational and Structural Biotechnology Journal. - : Elsevier. - 2001-0370. ; , s. 361-369
  • Tidskriftsartikel (refereegranskat)abstract
    • Three novel feruloyl esterases (Fae125, Fae7262 and Fae68) from Talaromyces wortmanniioverexpressed in the C1 platform were evaluated for the transesterification of vinyl ferulatewith two acceptors of different size and lipophilicity (prenol and L-arabinose) in detergentless microemulsions. The effect of reaction conditions such as the microemulsion composition, the substrate concentration, the enzyme load, the pH, the temperature and the agitation were investigated. The type A Fae125 belonging to the subfamily 5 (SF5) of phylogenetic classification showed highest yields for the synthesis of both products after optimization of reaction conditions: 81.8% for prenyl ferulate and 33.0% for L-arabinose ferulate. After optimization, an 8-fold increase in the yield and a 12-fold increase in selectivity were achieved for the synthesis of prenyl ferulate.
  •  
9.
  • Antonopoulou, Io, et al. (författare)
  • Optimized synthesis of novel prenyl ferulate performed by feruloyl esterases from Myceliophthora thermophila in microemulsions
  • 2017
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer. - 0175-7598 .- 1432-0614. ; 101:8, s. 3213-3226
  • Tidskriftsartikel (refereegranskat)abstract
    • Five feruloyl esterases (FAEs; EC 3.1.1.73), FaeA1, FaeA2, FaeB1, and FaeB2 from Myceliophthora thermophila C1 and MtFae1a from M. thermophila ATCC 42464, were tested for their ability to catalyze the transesterification of vinyl ferulate (VFA) with prenol in detergentless microemulsions. Reaction conditions were optimized investigating parameters such as the medium composition, the substrate concentration, the enzyme load, the pH, the temperature, and agitation. FaeB2 offered the highest transesterification yield (71.5 ± 0.2%) after 24 h of incubation at 30 °C using 60 mM VFA, 1 M prenol, and 0.02 mg FAE/mL in a mixture comprising of 53.4:43.4:3.2 v/v/v n-hexane:t-butanol:100 mM MOPS-NaOH, pH 6.0. At these conditions, the competitive side hydrolysis of VFA was 4.7-fold minimized. The ability of prenyl ferulate (PFA) and its corresponding ferulic acid (FA) to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was significant and similar (IC50 423.39 μM for PFA, 329.9 μM for FA). PFA was not cytotoxic at 0.8–100 μM (IC50 220.23 μM) and reduced intracellular reactive oxygen species (ROS) in human skin fibroblasts at concentrations ranging between 4 and 20 μM as determined with the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay.
  •  
10.
  • Antonopoulou, Io, 1989-, et al. (författare)
  • Screening of novel feruloyl esterases from Talaromyces wortmannii for the development of efficient and sustainable syntheses of feruloyl derivatives
  • 2019
  • Ingår i: Enzyme and microbial technology. - : Elsevier. - 0141-0229 .- 1879-0909. ; 120, s. 124-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The feruloyl esterases Fae125, Fae7262 and Fae68 from Talaromyces wortmannii were screened in 10 different solvent: buffer systems in terms of residual hydrolytic activity and of the ability for the transesterification of vinyl ferulate with prenol or L-arabinose. Among the tested enzymes, the acetyl xylan-related Fae125 belonging to the phylogenetic subfamily 5 showed highest yield and selectivity for both products in alkane: buffer systems (n-hexane or n-octane). Response surface methodology, based on a 5-level and 6-factor central composite design, revealed that the substrate molar ratio and the water content were the most significant variables for the bioconversion yield and selectivity. The effect of agitation, the possibility of DMSO addition and the increase of donor concentration were investigated. After optimization, competitive transesterification yields were obtained for prenyl ferulate (87.5-92.6%) and L-arabinose ferulate (56.2-61.7%) at reduced reaction times (≤ 24 h) resulting in good productivities (> 1 g/L/h, >300 kg product/kg FAE). The enzyme could be recycled for six consecutive cycles retaining 66.6% of the synthetic activity and 100% of the selectivity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy