SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Apelfröjd Rikke) "

Sökning: WFRF:(Apelfröjd Rikke)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Apelfröjd, Rikke, 1986- (författare)
  • Channel Estimation and Prediction for 5G Applications
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Accurate channel state information (CSI) is important for many candidate techniques of future wireless communication systems. However, acquiring CSI can sometimes be difficult, especially if the user equipment is mobile in which case the future channel realisations must be estimated/predicted. In realistic settings the predictability of radio channels is limited due to measurement noise, limited model orders and since the fading statistics must be modelled based on a set of limited and noisy training data.In this thesis, the limits of predictability for the radio channel are investigated. Results show that the predictability is limited primarily due to limitations in the training data, while the model order provides a second order limitation effect and the measurement noise comes in as a third order effect.Then, a Kalman-based linear filter is studied for potential 5G technologies:Coherent coordinated multipoint joint transmission, where channel predictions and the covariance matrix of the prediction error are used to design a robust linear precoder, evaluated in a three base station system. Results show that prediction improves the CSI for the pedestrian users such that system delays of 10 ms are acceptable. The use of the covariance matrix is important for difficult user groups, but of less importance with a simple user grouping system proposed.Massive multiple-input multiple-output (MIMO) in frequency division duplex (FDD) systems were a reduced, suboptimal, Kalman filter is suggested to estimate channels based on non-orthogonal pilots. By introducing a fixed grid of beams, the system generates sparsity in the channel vectors seen by each user, which then estimates its most relevant channels based on unique pilot codes for each beam. Results show that there is a 5 dB loss compared to orthogonal pilots.Downlink time division duplex (TDD) channels are estimated based on uplink pilots. By using a predictor antenna, which scouts the channel in advance, the desired downlink channel can be estimated using pilot-based estimates of the channels before and after it (in space). Results indicate that, with the help of Kalman smoothing, predictor antennas can enable accurate CSI for TDD downlinks at vehicular velocities of 80 km/h.
  •  
2.
  • Apelfröjd, Rikke, et al. (författare)
  • Design and measurement based evaluations of coherent JT CoMP : a study of precoding, user grouping and resource allocation using predicted CSI
  • 2014
  • Ingår i: EURASIP Journal on Wireless Communications and Networking. - : Springer Science and Business Media LLC. - 1687-1472 .- 1687-1499. ; , s. 100-
  • Tidskriftsartikel (refereegranskat)abstract
    • Coordinated multipoint (CoMP) transmission provides high theoretic gains in spectral efficiency with coherent joint transmission (JT) to multiple users. However, this requires accurate channel state information at the transmitter (CSIT) and also user groups with spatially compatible users. The aim of this paper is to use measured channels to investigate if significant CoMP gains can still be obtained with channel estimation errors. This turns out to be the case, but requires the combination of several techniques. We here focus on coherent downlink JT CoMP to multiple users within a cluster of cooperating base stations. The use of Kalman predictors is investigated to estimate the complex channel gains at the moment of transmission. It is shown that this can provide sufficient CSIT quality for JT CoMP even for long (> 20 ms) system delays at 2.66 GHz at pedestrian velocities or, for lower delays, at 500 MHz, at vehicular velocities. A user grouping and resource allocation scheme that provides appropriate groups for CoMP is also suggested. It provides performance close to that obtained by exhaustive search at very low complexity, low feedback cost and very low backhaul cost. Finally, a robust linear precoder that takes channel uncertainties into account when designing the precoding matrix is considered. We show that, in challenging scenarios, this provides large gains compared with zero-forcing precoding. Evaluations of these design elements are based on measured channels with realistic noise and intercluster interference assumptions. These show that high JT CoMP gains can be expected, on average over large sets of user positions, when the above techniques are combined - especially in severely intracluster interference limited scenarios.
  •  
3.
  • Apelfröjd, Rikke, 1986- (författare)
  • Design Aspects of Coordinated Multipoint Transmission : A Study of Channel Predictions, Resource Allocation, User Grouping and Robust Linear Precoding for Coherent Joint Transmission
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Shadowed areas and interference at cell borders pose great challenges for future wireless broadband systems. Coordinated Multipoint (CoMP) coherent joint transmission has shown the potential to overcome these challenges by turning harmful interference into useful signal power. However, there are obstacles to overcome before coherent joint transmission CoMP can be deployed. Some of these are the investigated in this thesis.First, coherent joint transmission requires very accurate Channel State Information (CSI), but unfortunately long system latencies cause outdating of the CSI. This can to some extend be counteracted by channel predictions. Two schemes are here investigated for predicting downlink Frequency Division Duplex (FDD) Orthogonal Frequency Division Multiplexing (OFDM) channels; Kalman filters and “predictor antennas”. The first is well suited for slow moving users, e.g. pedestrians or cyclists, as it does not require any special antenna setup. The second, which utilizes an extra antenna, located in front of the main receive antennas, is well suited for vehicular users, such as buses or trams, as these require long spatial prediction horizon.Second, a user grouping and resource allocation scheme is investigated. This scheme forms CoMP groups by local resource allocations and provides multi-user diversity gains very close to the optimal gains, found through an extensive combinatorial search. It has very low complexity, requires less feedback capacity than other schemes and places no demands on backhaul capacity.Finally, a linear precoder, which is robust to errors in the CSI, is investigated. This precoder takes the covariances of the channel errors into account while optimizing a Mean Squared Error (MSE) criterion. The MSE criterion includes design parameters that can be used as flexible tools for low dimensional searches with respect to an arbitrary optimization criterion, e.g. a weighted sum-rate criterion. The precoder design is also extended to handle backhaul constraints.Results show that with the combination of these three schemes: channel predictions, the proposed user grouping and resource allocation scheme and the robust linear precoder, then coherent joint transmission will indeed provide large capacity gains.
  •  
4.
  •  
5.
  •  
6.
  • Apelfröjd, Rikke (författare)
  • Kalman Predictions for Multipoint OFDM Downlink Channels
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Coordinated Multipoint (CoMP) transmission provides high theoreticgains in spectral eciency with coherent Joint Transmission (JT) to mul-tiple users. However, this requires accurate Channel State Information atthe Transmitter (CSIT). Unfortunately, coherent JT CoMP often is accom-panied by long system delays, due to e.g. data sharing over backhaul links.Therefore, the CSIT will be outdated.This report provides a detailed description on how to increase the accu-racy of the CSIT by utilizing Kalman lters to predict Orthogonal FrequencyDivision Multiplexing (OFDM) downlink channels. The small scale fading ofthese channels are modeled by Auto Regressive (AR) models of nite order.The report includes descriptions on how to estimate these models basedon past knowledge of the channel as well as analytical result on the pre-dictability of such models. Dierent technical design aspects for deployingthe Kalman lters in communication, such as pilot patterns, AR model esti-mations and the location of Kalman lters that predict downlink FrequencyDivision Duplex (FDD) channels, are also discussed.The aim of the report is to in detail describe the prediction procedureused in previous work. Some of the results from this previous work arehere presented and extended to provide a complete overview. All simulationresults are based on measured channels.The report also includes a description on how to model block-fading chan-nels with a specied channel accuracy that would have been obtained withKalman predictions. This model can then be used for system simulations.V:
  •  
7.
  • Apelfröjd, Rikke, 1986-, et al. (författare)
  • Kalman Smoothing for Irregular Pilot Patterns : A Case Study for Predictor Antennas in TDD Systems
  • 2018
  • Ingår i: 2018 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC). - : IEEE. - 9781538660096
  • Konferensbidrag (refereegranskat)abstract
    • For future large-scale multi-antenna systems, channel orthogonal downlink pilots are not feasible due to extensive overhead requirements. Instead, channel reciprocity can be utilized in time division duplex (TDD) systems so that the downlink channel estimates can be based on pilots transmitted during the uplink. User mobility affects the reciprocity and makes the channel state information outdated for high velocities and/or long downlink subframe durations. Channel extrapolation, e.g. through Kalman prediction, can reduce the problem but is also limited by high velocities and long downlink subframes. An alternative solution has been proposed where channel predictions are made with the help of an extra antenna, e.g. on the roof of a car, so called predictor antenna, with the primary objective to measure the channel at a position that is later encountered by the rearward antenna(s). The predictor antenna is not directly limited by high velocities and allows the channel in the downlinks to be interpolated rather than extrapolated. One remaining challenge here is to obtain a good interpolation of the uplink channel estimate, since a sequence of uplink reference signals (pilots) will be interrupted by downlink subframes. We here evaluate a Kalman smoothing estimate of the downlink channels and compare it to a cubic spline interpolation. These results are also compared to results where uplink channels are estimated through Kalman filters and predictors. Results are based on measured channels and show that with Kalman smoothing, predictor antennas can enable accurate channel estimates for a longer downlink period at vehicular velocities. The gaps in the uplink pilot stream, due to downlink subframes, can have durations that correspond to a vehicle movement of up to 0.75 carrier wavelengths in space, for Rayleigh-like non-line-of-sight fading.
  •  
8.
  • Apelfröjd, Rikke, 1986-, et al. (författare)
  • Low-Overhead Cyclic Reference Signals for Channel Estimation in FDD Massive MIMO
  • 2019
  • Ingår i: IEEE Transactions on Communications. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0090-6778 .- 1558-0857. ; 67:5, s. 3279-3291
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive multiple input multiple output (MIMO) transmission and coordinated multipoint transmission are candidate technologies for increasing data throughput in evolving 5G standards. Frequency division duplex (FDD) is likely to remain predominant in large parts of the spectrum below 6 GHz for future 5G systems. Therefore, it is important to estimate the downlink FDD channels from a very large number of antennas, while avoiding an excessive downlink reference signal overhead. We here propose and investigate a three part solution. First, massive MIMO downlinks use a fixed grid of beams. For each user, only a subset of beams will then be relevant, and require estimation. Second, sets of coded reference signal sequences, with cyclic patterns over time, are used. Third, each terminal estimates its most relevant channels. We here propose and compare a linear mean square estimation and a Kalman estimation. Both utilize frequency and antenna correlation, and the later also utilizes temporal correlation. In extensive simulations, this scheme provides channel estimates that lead to an insignificant beamforming performance degradation as compared to full channel knowledge. The cyclic pattern of coded reference signals is found to be important for reliable channel estimation, without having to adjust the reference signals to specific users.
  •  
9.
  • Apelfröjd, Rikke, et al. (författare)
  • Measurement-based evaluation of robust linear precoding for downlink CoMP
  • 2012
  • Ingår i: IEEE International Conference on Communications, ICC, Ottawa, Canada.
  • Konferensbidrag (refereegranskat)abstract
    • We study the design and evaluation of joint processing coordinated multipoint (CoMP) downlink transmission. Precoders will then be designed based on outdated channel state information (CSI), so interference cannot be eliminated completely as by an ideal zero-forcing (ZF) solution. We here strive to design and evaluate realistic linear transmit schemes. Kalman predictors are used for orthogonal frequency-division multiplexing (OFDM) channels. They provide optimal linear predictions and also estimates of their uncertainty. Robust linear precoders are designed based on these uncertainty estimates. We introduce and use robust linear quadratic optimal feedforward control, with the criterion averaged (marginalized) over the CSI uncertainty. This flexible solution performs minimum mean square error (MSE) minimization. It can also iteratively optimize other criteria, such as sum-rate. The prediction- and transmission performance is evaluated using measured data on 20 MHz OFDM downlinks from three base stations, for users at fast pedestrian velocities. Downlink CoMP is here also compared to cellular transmission, that uses orthogonal resources within cells but allows uncontrolled interference between cells.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy