SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Apostolopoulou Kalkavoura Varvara 1988 ) "

Sökning: WFRF:(Apostolopoulou Kalkavoura Varvara 1988 )

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Apostolopoulou-Kalkavoura, Varvara, 1988-, et al. (författare)
  • Humidity-Dependent Thermal Boundary Conductance Controls Heat Transport of Super-Insulating Nanofibrillar Foams
  • 2021
  • Ingår i: Matter. - : Elsevier BV. - 2590-2393 .- 2590-2385. ; 4:1, s. 276-289
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanomaterial (CNM)-based foams and aerogels with thermal conductivities substantially below the value for air attract significant interest as super-insulating materials in energy-efficient green buildings. However, the moisture dependence of the thermal conductivity of hygroscopic CNM-based materials is poorly understood, and the importance of phonon scattering in nanofibrillar foams remains unexplored. Here, we show that the thermal conductivity perpendicular to the aligned nanofibrils in super-insulating ice-templated nanocellulose foams is lower for thinner fibrils and depends strongly on relative humidity (RH), with the lowest thermal conductivity (14 mW m−1 K−1) attained at 35% RH. Molecular simulations show that the thermal boundary conductance is reduced by the moisture-uptake-controlled increase of the fibril-fibril separation distance and increased by the replacement of air with water in the foam walls. Controlling the heat transport of hygroscopic super-insulating nanofibrillar foams by moisture uptake and release is of potential interest in packaging and building applications.
  •  
3.
  • Apostolopoulou Kalkavoura, Varvara, 1988-, et al. (författare)
  • In Situ Functionalisation and Upcycling of Post-Consumer Textile Blends into 3D Printable Nanocomposite Filaments
  • 2024
  • Ingår i: Advanced Sustainable Systems. - 2366-7486 .- 2366-7486.
  • Tidskriftsartikel (refereegranskat)abstract
    • The linear lifecycle of the textile industry contributes to the enormous waste generation of post-consumer garments. Recycling or repurposing of post-consumer garments typically requires separation of the individual components. This study describes a novel and facile chemo-thermo-mechanical method for producing extrudable pellets, involving one-pot, 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation of post-consumer polycotton textiles, followed by mild mechanical treatment, all without isolating the constituents of the polycotton blend. The oxidized blend with high cellulose and carboxylate content of 1221 ± 82 mmol COO− per kg of cotton, is pelletised into a masterbatch and further in situ extruded into nanocomposite filaments for 3D printing. The carboxyl groups introduced on the polycotton-based filters enable cotton fibrillation into nanoscaled fibers during mechanical treatment and extrusion resulting to a variety of functional and high surface-finish quality models, including filters and fashion accessories. The electrostatic interactions with positively charged species, such as methylene blue (MB), facilitate their adsorption from water while exhibiting promising adsorption capacities. The adsorption of MB follows the Freundlich model and depends on the printed porosity of the filter. A “trash to treasure” concept for textile waste is further corroborated through the use of the developed 3D printing filament into commodity products.
  •  
4.
  • Apostolopoulou-Kalkavoura, Varvara, 1988-, et al. (författare)
  • Thermal conductivity of hygroscopic foams based on cellulose nanofibrils and a nonionic polyoxamer
  • 2018
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 25:2, s. 1117-1126
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocellulose-based lightweight foams are promising alternatives to fossil-based insulation materials for energy-efficient buildings. The properties of cellulose-based materials are strongly influenced by moisture and there is a need to assess and better understand how the thermal conductivity of nanocellulose-based foams depends on the relative humidity and temperature. Here, we report a customized setup for measuring the thermal conductivity of hydrophilic materials under controlled temperature and relative humidity conditions. The thermal conductivity of isotropic foams based on cellulose nanofibrils and a nonionic polyoxamer, and an expanded polystyrene foam was measured over a wide range of temperatures and relative humidity. We show that a previously developed model is unable to capture the strong relative humidity dependence of the thermal conductivity of the hygroscopic, low-density nanocellulose- and nonionic polyoxamer-based foam. Analysis of the moisture uptake and moisture transport was used to develop an empirical model that takes into consideration the moisture content and the wet density of the investigated foam. The new empirical model could predict the thermal conductivity of a foam with a similar composition but almost 3 times higher density. Accurate measurements of the thermal conductivity at controlled temperature and relative humidity and availability of simple models to better predict the thermal conductivity of hygroscopic, low-density foams are necessary for the development of nanocellulose-based insulation materials.
  •  
5.
  • Apostolopoulou-Kalkavoura, Varvara, 1988- (författare)
  • Thermal Conductivity of Hygroscopic Foams Based on Cellulose Nanomaterials
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biobased super-insulating materials could mitigate climate change by minimizing the use of petroleum-based materials, creating artificial carbon sinks and minimizing the energy needed to maintain pleasant interior conditions. Cellulose nanomaterials (CNM) produced from abundantly available cellulose sources constitute versatile, highly anisotropic raw materials with tunable surface chemistry and high strength. This thesis includes the evaluation of the thermal conductivity of isotropic and anisotropic CNM-based foams and aerogels and analysis of the dominant heat transfer mechanisms. We have developed a customized measurement cell for hygroscopic materials in which the humidity and temperature are carefully controlled while the thermal conductivity is measured. Anisotropic cellulose nanofibrils (CNF) foams with varying diameters showed a super-insulating behavior perpendicular (radial) to the nanofibril direction, that depended non-linearly on the relative humidity (RH) and foam density. Molecular simulations revealed that the very low thermal conductivity is related to phonon scattering due to the increase of the inter-fibrillar gap with increasing RH that resulted in a 6-fold decrease of the thermal boundary conductance. The moisture-induced swelling exceeds the thermal conductivity increase due to water uptake at low and intermediate RH and resulted in a minimum thermal conductivity of 14 mW m-1 K-1 at 35% RH and 295 K for the foams based on the thinnest CNF.The density-dependency of the thermal conductivity of cellulose nanocrystal (CNC) foams with densities of 25 to 129 kg m-3 was investigated and a volume-weighted modelling of the solid and gas thermal conductivity contributions suggested that phonon scattering was essential to explain the low radial thermal conductivity, whereas the replacement of air with water and the Knudsen effect related to the nanoporosity in the foam walls had a small effect. Intermediate-density CNC foams (34 kg m-3) exhibited a radial thermal conductivity of 24 mW m-1 K-1 at 295 K and 20% RH, which is below the value for air.The moisture uptake of foams based on CNMs with different degree of crystallinity and surface modifications decreased significantly with increasing crystallinity and temperature. Molecular simulations showed that the narrow pore size distribution of the amorphous cellulose film, and the relatively low water adsorption in the hydration cell around the oxygen of the carboxyl group play an important role for the moisture uptake of amorphous and crystalline CNM-based materials.Isotropic CNF- and polyoxamer based foams as well as CNF-AL-MIL-53 (an aluminum‑based metal-organic framework) foams were both moderately insulating (>40 mW m-1 K-1) and comparable with commercial expanded polystyrene. The thermal conductivity of CNF and polyoxamer foams displayed a very strong RH dependency that was modelled with a modified Künzel’s model. The presence of hydrophobic AL-MIL-53 decreased the moisture uptake of CNF-AL-MIL-53 aerogels by 42% compared to CNF-polyoxamer foams.Solid and gas conduction are the main heat transfer mechanisms in hygroscopic nanofibrillar foams and aerogels that depend on the interfacial phonon scattering, Knudsen effect and water uptake. It is essential that the thermal conductivity measurements of hygroscopic CNM-based foams and aerogels are determined at controlled RH and that parameters such as the temperature, density, nanoporosity, fibril dimensions and alignment are characterized and controlled for systematic development and upscaling of biobased foams for applications in building insulation and packaging.
  •  
6.
  • Apostolopoulou-Kalkavoura, Varvara, 1988-, et al. (författare)
  • Thermally Insulating Nanocellulose-Based Materials
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 33:28
  • Forskningsöversikt (refereegranskat)abstract
    • Thermally insulating materials based on renewable nanomaterials such as nanocellulose could reduce the energy consumption and the environmental impact of the building sector. Recent reports of superinsulating cellulose nanomaterial (CNM)-based aerogels and foams with significantly better heat transport properties than the commercially dominating materials, such as expanded polystyrene, polyurethane foams, and glass wool, have resulted in a rapidly increasing research activity. Herein, the fundamental basis of thermal conductivity of porous materials is described, and the anisotropic heat transfer properties of CNMs and films with aligned CNMs and the processing and structure of novel CNM-based aerogels and foams with low thermal conductivities are presented and discussed. The extraordinarily low thermal conductivity of anisotropic porous architectures and multicomponent approaches are highlighted and related to the contributions of the Knudsen effect and phonon scattering.
  •  
7.
  • Apostolopoulou Kalkavoura, Varvara, 1988-, et al. (författare)
  • Trash to treasure: 3D printing of waste-based polycotton composite for the production of water filters and commodity products
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The recycling of polycotton without separating its constituents for high-performance applications has not yet been fully investigated. In this study, we propose a simple and efficient method involving one-pot, 2, 2, 6, 6 – tetramethylpiperdine-1-oxyl (TEMPO) - oxidation of post-consumer polycotton textile waste followed by lenient mechanical fibrillation. Successful chemical modification of the polycotton waste was confirmed by the Fourier-transform infrared (FT-IR) spectroscopy measurements, in which the presence of carboxyl groups introduced during the TEMPO-oxidation was observed. Moreover, the waste-based pellets were single-screw extruded into 3D printing filaments, which were further processed via desktop Fused Deposition Modelling (FDM) 3D printer.FDM processing was carried out without hindrance. The textile-based filament was used for the fabrication of a variety of high surface-finish quality models, which presented diverse geometries and porosity architectures. The versatility of the developed 3D printed models was demonstrated through both, their potential to be utilized as fashion accessories, and by evaluating their performance in water treatment applications. Taking advantage of the introduction of negatively charged carboxylic groups onto the polycotton-based materials, which was expected to facilitate the electrostatic interactions with positively charged species, the 3D printed filters were tested for removal of cationic dye methylene blue (MB) from water in a batch adsorption study. The adsorption followed Langmuir model, with a maximim adsorption capacity of 3 µmol/g. Overall, this work presents a novel approach for the upcycling of polycotton waste into functional filament suitable for a variety of 3D printing, and further, engineering applications. The development of composite filaments and their mechanical and adsorption properties pave the way for future research within valorisation of textile-based waste.
  •  
8.
  • Church, Tamara L., et al. (författare)
  • A Stiff, Tough, and Thermally Insulating Air- and Ice-Templated Plant-Based Foam
  • 2022
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 23:6, s. 2595-2602
  • Tidskriftsartikel (refereegranskat)abstract
    • By forming and directionally freezing an aqueous foam containing cellulose nanofibrils, methylcellulose, and tannic acid, we produced a stiff and tough anisotropic solid foam with low radial thermal conductivity. Along the ice-templating direction, the foam was as stiff as nanocellulose–clay composites, despite being primarily methylcellulose by mass. The foam was also stiff perpendicular to the direction of ice growth, while maintaining λr < 25 mW m–1 K–1 for a relative humidity (RH) up to 65% and <30 mW m–1 K–1 at 80% RH. This work introduces the tandem use of two practical techniques, foam formation and directional freezing, to generate a low-density anisotropic material, and this strategy could be applied to other aqueous systems where foam formation is possible. 
  •  
9.
  •  
10.
  • Kriechbaum, Konstantin, et al. (författare)
  • Sclerotization-inspired aminoquinone cross-linking of thermally insulating and moisture-resilient biobased foams
  • 2020
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 8:47, s. 17408-17416
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermally insulating foams and aerogels based on cellulose nanofibrils (CNFs) are promising alternatives to fossil-based thermal insulation materials. We demonstrate a scalable route for moisture-resilient lightweight foams that relies on sclerotization-inspired Michael-type cross-linking of amine-modified CNFs by oxidized tannic acid. The solvent-exchanged, ice-templated, and quinone-tanned cross-linked anisotropic structures were mechanically stable and could withstand evaporative drying with minimal structural change. The low-density (7.7 kg m–3) cross-linked anisotropic foams were moisture-resilient and displayed a compressive modulus of 90 kPa at 98% relative humidity (RH) and thermal conductivity values close to that of air between 20 and 80% RH at room temperature. Sclerotization-inspired cross-linking of biobased foams offers an energy-efficient and scalable route to produce sustainable and moisture-resilient lightweight materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (11)
annan publikation (3)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Apostolopoulou-Kalka ... (16)
Bergström, Lennart (8)
Mathew, Aji P., 1971 ... (7)
Munier, Pierre (4)
Ruiz-Caldas, Maria-X ... (4)
Zozoulenko, Igor (2)
visa fler...
Samec, Joseph S. M. (2)
Håkansson, Helena (2)
Linares, Mathieu (2)
Lavoine, Nathalie (2)
Garg, Mohit (2)
Fijoł, Natalia, 1994 ... (2)
Schiele, Carina, 199 ... (2)
Muangmeesri, Suthawa ... (2)
Baddigam, Kiran Redd ... (2)
Hellström, Anna-Kari ... (1)
Zhou, Shengyang (1)
Xu, Chao (1)
Strømme, Maria, 1970 ... (1)
Bergström, Lennart, ... (1)
Tammelin, Tekla (1)
Lahtinen, Panu (1)
Larsson, Mikael (1)
Samec, Joseph S. M., ... (1)
Jaworski, Aleksander ... (1)
Andersson, Matilda (1)
Malmström, Eva (1)
Dlugozima, Lukasz (1)
Heuthe, Veit-Lorenz (1)
Hu, Shiqian (1)
Shiomi, Junichiro (1)
Lombardo, Salvatore, ... (1)
Gordeyeva, Korneliya (1)
Budtova, Tatiana, Pr ... (1)
Lombardo, Salvatore (1)
Ruiz-Caldas, Maria-X ... (1)
Tavares da Costa, Ma ... (1)
Hildenbrand, Jutta (1)
Church, Tamara L (1)
Kriechbaum, Konstant ... (1)
Hadi, Seyed Ehsan (1)
Bergström, Lennart, ... (1)
Kaldéus, Tahani (1)
Hadi, Seyed Ehsan, 1 ... (1)
Kubicka, David (1)
Kriechbaum, Konstant ... (1)
Navare, Kranti (1)
Lebedeva, Daria, 199 ... (1)
Marson, Alessandro (1)
Manzardo, Alessandro (1)
visa färre...
Lärosäte
Stockholms universitet (16)
Karlstads universitet (3)
Uppsala universitet (1)
Linköpings universitet (1)
RISE (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Teknik (12)
Naturvetenskap (10)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy