SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aragon Briceno Christian) "

Sökning: WFRF:(Aragon Briceno Christian)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aragon-Briceno, Christian, et al. (författare)
  • Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate
  • 2022
  • Ingår i: Renewable energy. - : Elsevier BV. - 0960-1481 .- 1879-0682. ; 184, s. 577-591
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaerobic digestion is an efficient way of using a wet fraction of municipal solid waste (MSW) for energy purposes as it can produce biogas. The moisture content of the digestate after application of mechanical dewatering is still high, and the amount of heat needed for drying is significant. Hydrothermal carbonization (HTC) is a process that can potentially offer great benefits by improved mechanical dewatering and valorization of the digestate into a better quality solid fuel. This study focuses on the determination of the optimum HTC process conditions to recover water from the MSW digestate. Different process conditions as temperature (180, 200, and 230 °C) and residence time (30, 60, and 120 min) were tested. Furthermore, a mass and energy balance was carried out and a process model in Aspen Plus was built. Results showed that HTC treatment increased the water recovery (40–48%) during the dewatering process compared with the original feedstock (18%). The process model showed a positive energy balance of 110 kWh per ton of MSW digestate treated with an electrical efficiency of 23.9%.
  •  
2.
  • Wang, Shule, et al. (författare)
  • Van Krevelen diagrams based on machine learning visualize feedstock-product relationships in thermal conversion processes
  • 2023
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Feedstock properties play a crucial role in thermal conversion processes, where understanding the influence of these properties on treatment performance is essential for optimizing both feedstock selection and the overall process. In this study, a series of van Krevelen diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the products obtained from six commonly used thermal conversion techniques: torrefaction, hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis, and gasification. Machine learning methods were employed, utilizing data, methods, and results from corresponding studies in this field. Furthermore, the reliability of the constructed van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen diagrams developed in this work systematically provide visual representations of the relationships between feedstock and products in thermal conversion processes, thereby aiding in optimizing the selection of feedstock and the choice of thermal conversion technique.
  •  
3.
  • Wen, Yuming, et al. (författare)
  • H2-rich syngas production from pyrolysis of agricultural waste digestate coupled with the hydrothermal carbonization process
  • 2022
  • Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904 .- 1879-2227. ; 269, s. 116101-116101
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel process to produce a H2-rich syngas from a high moisture-containing agricultural waste digestate is proposed. This process combines the use of hydrothermal carbonization (HTC), dewatering, pyrolysis, and catalytic reforming. Due to the feature of the high moisture content in the digestate, the effect of the HTC and dewatering on the process performance is of interest, and four scenarios were considered. Furthermore, three pyrolytic temperatures were chosen to understand the effect of pyrolysis conditions on the produced H2-rich syngas. A life cycle assessment was conducted to investigate the environmental impact of the proposed process. Results show that the application of HTC technology, increases the process efficiency, produces less syngas from one ton of digestate, lowers the cumulative energy demand and the negative carbon emissions. When the dewatering technology is used, the syngas yield is promoted but the H2 concentration in the syngas is reduced. The H2 to CO molar ratio reaches the maximum value of 9.2 when using a 450 ˚C pyrolysis temperature, by only using HTC. When the combining process of HTC and dewatering is used, it results in the highest process efficiency, but the smallest relative negative CO2 equivalent emissions by treating one ton of dry digestate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy