SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Araujo Moyses 1975 ) "

Sökning: WFRF:(Araujo Moyses 1975 )

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Araujo, Rafael B., et al. (författare)
  • Designing strategies to tune reduction potential of organic molecules for sustainable high capacity batteries application
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 5:9, s. 4430-4454
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic compounds evolve as a promising alternative to the currently used inorganic materials in rechargeable batteries due to their low-cost, environmentally friendliness and flexibility. One of the strategies to reach acceptable energy densities and to deal with the high solubility of known organic compounds is to combine small redox active molecules, acting as capacity carrying centres, with conducting polymers. Following this strategy, it is important to achieve redox matching between the chosen molecule and the polymer backbone. Here, a synergetic approach combining theory and experiment has been employed to investigate this strategy. The framework of density functional theory connected with the reaction field method has been applied to predict the formal potential of 137 molecules and identify promising candidates for the referent application. The effects of including different ring types, e.g. fused rings or bonded rings, heteroatoms, [small pi] bonds, as well as carboxyl groups on the formal potential, has been rationalized. Finally, we have identified a number of molecules with acceptable theoretical capacities that show redox matching with thiophene-based conducting polymers which, hence, are suggested as pendent groups for the development of conducting redox polymer based electrode materials.
  •  
2.
  • Carvalho, Rodrigo P., et al. (författare)
  • An evolutionary-driven AI model discovering redox-stable organic electrode materials for alkali-ion batteries
  • 2023
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Data-driven approaches have been revolutionizing materials science and materials discovery in the past years. Especially when coupled with other computational physics methods, they can be applied in complex high-throughput schemes to discover novel materials, e.g. for batteries. In this direction, the present work provides a robust AI-driven framework, to accelerate the discovery of novel organic-based materials for Li-, Na- and K-ion batteries. This platform is able to predict the open-circuit voltage of the respective battery and provide an initial assessment of the materials redox stability. The model was employed to screen 45 million small molecules in the search for novel high-potential cathodes, resulting in a proposed shortlist of 3202, 689 and 702 novel compounds for Li-, Na- and K-ion batteries, respectively, considering only the redox stable candidates. 
  •  
3.
  • Carvalho, Rodrigo P. (författare)
  • Organic Electrode Battery Materials : A Journey from Quantum Mechanics to Artificial Intelligence
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Batteries have become an irreplaceable technology in human life as society becomes progressively more dependent on electricity. The demand for novel battery technologies has increased fast, especially with the popularisation of different portable devices. However, the current battery industry relies heavily on non-renewable resources that are also prone to provoke environmental harm. Among the possible candidates for the next generation of batteries, organic electroactive materials (OEMs) have become attractive due to a series of advantages: vastly accessible from renewable raw materials; highly versatile due to the possible functionalisation mechanisms; possibly lower production costs; reduced environmental impacts; etc. Nevertheless, some drawbacks need to be overcome before OEMs become competitive. Issues with energy density, rate capability and cycling stability hinder their final technological application. This thesis thereby discusses fundamental aspects of OEMs and proposes novel techniques to accelerate the materials discovery process.The first part of this thesis presents a pathway to systematically investigate organic materials by combining quantum mechanics calculations and crystal structure predictions. An evolutionary algorithm predicts the crystal structure of several OEMs, enabling an initial assessment of the electronic structure and the thermodynamics of the ionic insertion mechanism in these compounds. Furthermore, this first part also suggests an approach to tailor OEMs, identifying their charge storage limits and the possible occurrence of metastable phases during the ion insertion process. However, the presented strategy, while accurate, is seriously limited by its high computational demands, which are unrealistic for high-throughput screening of novel materials.Since organic materials represent a possibly limitless universe of compounds, alternative techniques are needed. Thus, the second part of this thesis combines quantum mechanics and artificial intelligence (AI), rendering a powerful platform to aid this task. An “AI-\textit{kernel}” was employed to analyse millions of organic compounds, discovering novel possible organic battery materials. Moreover, the AI accurately identified common functional groups associated with higher-voltage electrodes and suggested features that may aid future materials design. Furthermore, the kernel can also identify materials suitable for Na- and K-ion batteries and anticipate their redox stability.In conclusion, this thesis has focused on investigating fundamental properties of organic electroactive materials, particularly the ionic insertion process in batteries. Furthermore, AI-driven methodologies have also been proposed, accurately evaluating OEMs and enabling fast access to the gigantic organic realm when searching for novel battery electrode materials.
  •  
4.
  • Carvalho, Rodrigo P., et al. (författare)
  • Understanding the lithiation limits of high-capacity organic battery anodes by atomic charge derivative analysis
  • 2022
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 157:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The superlithiation of organic anodes is a promising approach for developing the next generation of sustainable Li-ion batteries with high capacity. However, the lack of fundamental understanding hinders its faster development. Here, a systematic study of the lithiation processes in a set of dicarboxylate-based materials is carried out within the density functional theory formalism. It is demonstrated that a combined analysis of the Li insertion reaction thermodynamics and the conjugated-moiety charge derivative enables establishing the experimentally observed maximum storage, thus allowing an assessment of the structure-function relationships also.
  •  
5.
  • de Araujo, L. O., et al. (författare)
  • A new CBD-CC-E spectral similarity scale for optimizing computer-simulated UV–vis spectra
  • 2021
  • Ingår i: Computational and Theoretical Chemistry. - : Elsevier. - 2210-271X .- 2210-2728. ; 1197
  • Tidskriftsartikel (refereegranskat)abstract
    • A new CBD-CC-E spectral similarity scale is proposed to optimize computer-simulated UV–vis spectra. The scale was tested using the S1←S0 spectrum of the dithienyl-diketopyrrolopyrrole molecule (DPP2T), an important building block for manufacturing materials for optoelectronic applications. Our results indicate that the spectrum calculated at M06/6-311++G(d,p) level was the one that best reproduced the intensity and shape features of the experimental spectrum, while CAM-B3LYP/6-311++G(d,p) was the one that best reproduced the energy. The CBD-CC-E scale makes the comparison between computer-simulated and experimental spectra statistically based, allowing a systematic and automated choice of the theory level whose calculated spectrum best reproduces the shape, intensity or energy of the experimental UV–vis spectrum.
  •  
6.
  • Ebadi, Mahsa, et al. (författare)
  • Density Functional Theory Modeling the Interfacial Chemistry of the LiNO3 Additive for Lithium-Sulfur Batteries by Means of Simulated Photoelectron Spectroscopy
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:42, s. 23324-23332
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-sulfur (Li-S) batteries are considered candidates for next-generation energy storage systems due to their high theoretical specific energy. There exist, however, some shortcomings of these batteries, not least the solubility of intermediate polysulfides into the electrolyte generating a so-called "redox shuttle", which gives rise to self-discharge. LiNO3 is therefore frequently used as an electrolyte additive to help suppress this mechanism, but the exact nature of the LiNO3 functionality is still unclear. Here, density functional theory calculations are used to investigate the electronic structure of LiNO3 and a number of likely species (N-2, N2O, LiNO2, Li3N, and Li2N2O2) resulting from the reduction of this additive on the surface of Li metal anode. The N is X-ray photoelectron spectroscopy core level binding energies of these molecules on the surface are calculated in order to compare the results with experimentally reported values. The core level shifts (CLS) of the binding energies are studied to identify possible factors responsible for the position of the peaks. Moreover, solid phases of (cubic) c-Li3N and (hexagonal) alpha-Li3N on the surface of Li metal are considered. The N is binding energies for the bulk phases of Li3N and at the Li3N/Li interfaces display higher values as compared to the Li3N molecule, indicating a clear correlation between the coordination number and the CLS of the solid phases of Li3N.
  •  
7.
  • Franco, Leandro R., et al. (författare)
  • Theoretical investigation of solvent and oxidation/deprotonation effects on the electronic structure of a mononuclear Ru-aqua-polypyridine complex in aqueous solution
  • 2023
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 25:36, s. 24475-24494
  • Tidskriftsartikel (refereegranskat)abstract
    • Mononuclear polypyridine ruthenium (Ru) complexes can catalyze various reactions, including water splitting, and can also serve as photosensitizers in solar cells. Despite recent progress in their synthesis, accurately modeling their physicochemical properties, particularly in solution, remains challenging. Herein, we conduct a theoretical investigation of the structural and electronic properties of a mononuclear Ru-aqua polypyridine complex in aqueous solution, considering five of its possible oxidation/protonation states species: [RuII(H2O)(py)(bpy)2]2+, [RuII(OH)(py)(bpy)2]+, [RuIII(H2O)(py)(bpy)2]3+, [RuIII(OH)(py)(bpy)2]2+ and [RuIV(O)(py)(bpy)2]2+, where py = pyridine and bpy = 2,2 & PRIME;-bipyridine. At first, we investigate the impact of proton-coupled and non-coupled electron transfer reactions on the geometry and electronic structure of the complexes in vacuum and in solution, using an implicit solvent model. Then, using a sequential multiscale approach that combines quantum mechanics and molecular mechanics (S-QM/MM), we examine the explicit solvent effects on the electronic excitations of the complexes, and compare them with the experimental results. The complexes were synthesized, and their absorption spectra measured in aqueous solution. To accurately describe the QM interactions between the metal center and the aqueous ligand in the MM simulations, we developed new force field parameters for the Ru atom. We analyze the solvent structure around the complexes and account for its explicit influence on the polarization and electronic excitations of the complexes. Notably, accounting for the explicit solvent polarization effects of the first solvation shells is essential to correctly describe the energy of the electronic transitions, and the explicit treatment of the hydrogen bonds at the QM level in the excitation calculations improves the accuracy of the description of the metal-to-ligand charge-transfer bands. Transition density matrix analysis is used to characterize all electronic transitions in the visible and ultraviolet ranges according to their charge-transfer (CT) character. This study elucidates the electronic structure of those ruthenium polypyridyl complexes in aqueous solution and underscores the importance of precisely describing solvent effects, which can be achieved employing the S-QM/MM method. Ru-aqua complex in water, showcasing Ru atom, coordinated water, and hydrogen bonds on left; UV-Vis spectrum and comparison to experiment on right. QM/MM approach emphasized.
  •  
8.
  • Franco, Leandro Rezende, et al. (författare)
  • Theoretical investigation of solvent and oxidation/deprotonation effects on the electronic structure of a mononuclear Ru-aqua-polypyridine complex in aqueous solution
  • 2023
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 25:36, s. 24475-24494
  • Tidskriftsartikel (refereegranskat)abstract
    • Mononuclear polypyridine ruthenium (Ru) complexes can catalyze various reactions, including water splitting, and can also serve as photosensitizers in solar cells. Despite recent progress in their synthesis, accurately modeling their physicochemical properties, particularly in solution, remains challenging. Herein, we conduct a theoretical investigation of the structural and electronic properties of a mononuclear Ru-aqua polypyridine complex in aqueous solution, considering five of its possible oxidation/protonation states species: [RuII(H2O)(py)(bpy)2]2+, [RuII(OH)(py)(bpy)2]+, [RuIII(H2O)(py)(bpy)2]3+, [RuIII(OH)(py)(bpy)2]2+ and [RuIV(O)(py)(bpy)2]2+, where py = pyridine and bpy = 2,2 & PRIME;-bipyridine. At first, we investigate the impact of proton-coupled and non-coupled electron transfer reactions on the geometry and electronic structure of the complexes in vacuum and in solution, using an implicit solvent model. Then, using a sequential multiscale approach that combines quantum mechanics and molecular mechanics (S-QM/MM), we examine the explicit solvent effects on the electronic excitations of the complexes, and compare them with the experimental results. The complexes were synthesized, and their absorption spectra measured in aqueous solution. To accurately describe the QM interactions between the metal center and the aqueous ligand in the MM simulations, we developed new force field parameters for the Ru atom. We analyze the solvent structure around the complexes and account for its explicit influence on the polarization and electronic excitations of the complexes. Notably, accounting for the explicit solvent polarization effects of the first solvation shells is essential to correctly describe the energy of the electronic transitions, and the explicit treatment of the hydrogen bonds at the QM level in the excitation calculations improves the accuracy of the description of the metal-to-ligand charge-transfer bands. Transition density matrix analysis is used to characterize all electronic transitions in the visible and ultraviolet ranges according to their charge-transfer (CT) character. This study elucidates the electronic structure of those ruthenium polypyridyl complexes in aqueous solution and underscores the importance of precisely describing solvent effects, which can be achieved employing the S-QM/MM method.
  •  
9.
  • Franco, Leandro R., et al. (författare)
  • Unraveling the acid-base characterization and solvent effects on the structural and electronic properties of a bis-bidentate bridging ligand
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 24:17, s. 10222-10240
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the interactions and the solvent effects on the distribution of several species in equilibrium and how it can influence the 1H-NMR properties, spectroscopy (UV-vis absorption), and the acid–base equilibria can be especially challenging. This is the case of a bis-bidentate bridging ligand bis(2-pyridyl)-benzo-bis(imidazole), where the two pyridyl and four imidazolyl nitrogen atoms can be protonated in different ways, depending on the solvent, generating many isomeric/tautomeric species. Herein, we report a combined theoretical–experimental approach based on a sequential quantum mechanics/molecular mechanics procedure that was successfully applied to describe in detail the acid–base characterization and its effects on the electronic properties of such a molecule in solution. The calculated free-energies allowed the identification of the main species present in solution as a function of the solvent polarity, and its effects on the magnetic shielding of protons (1H-NMR chemical shifts), the UV-vis absorption spectra, and the acid–base equilibrium constants (pKas) in aqueous solution. Three acid–base equilibrium constants were experimentally/theoretically determined (pKa1 = 1.3/1.2, pKa2 = 2.1/2.2 and pKa5 = 10.1/11.3) involving mono-deprotonated and mono-protonated cis and trans species. Interestingly, other processes with pKa3 = 3.7 and pKa4 = 6.0 were also experimentally determined and assigned to the protonation and deprotonation of dimeric species. The dimerization of the most stable neutral species was investigated by Monte Carlo simulations and its electronic effects were considered for the elucidation of the UV-vis absorption bands, revealing transitions mainly with the charge-transfer characteristic and involving both the monomeric species and the dimeric species. The good matching of the theoretical and experimental results provides an atomistic insight into the solvent effects on the electronic properties of this bis-bidentate bridging ligand.
  •  
10.
  • Marchiori, Cleber, et al. (författare)
  • Understanding the Electrochemical Stability Window of Polymer Electrolytes in Solid-State Batteries from Atomic-Scale Modeling : The Role of Li-Ion Salts
  • 2020
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 32:17, s. 7237-7246
  • Tidskriftsartikel (refereegranskat)abstract
    • After decades of development in Li-ion batteries, solid polymer electrolytes (SPEs) are currently experiencing a renaissance as a promising category of materials to be used in all-solid-state batteries. However, a fundamental understanding of their electrochemical properties in the battery environment is still lacking, which in turn limits the implementation of this prospective solution. With the aim of bridging this knowledge gap, we have assessed, through first-principles thermodynamics calculations based on atomic-scale modeling, the electrochemistry of a range of relevant polymer electrolyte hosts in their pristine form and also when doped with commonly used Li-ion salts. A significant change of the electrochemical stability window upon formation of the polymer/salt complexes was found. The mechanisms of the reduction and oxidation reactions are unveiled and correlated to the electronic structures and molecular structural relaxations. In the reduction process, the salt anions control the potentials due to bond cleavage that stabilize the reduced state. In the oxidation process, the mechanism is different with the charge being stabilized either on the polymer or on the salt anion depending on the complex formed. This assessment of the electrochemical stability of the polymer/salt complexes could serve as a guide for electrolyte design in SPE-based all-solid-state batteries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54
Typ av publikation
tidskriftsartikel (45)
konferensbidrag (4)
doktorsavhandling (3)
annan publikation (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (48)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Araujo, Moyses, 1975 ... (37)
Marchiori, Cleber (20)
Brandell, Daniel, 19 ... (17)
Pereira de Carvalho, ... (8)
Ebadi, Mahsa (8)
Franco, Leandro R. (7)
visa fler...
Araujo, Carlos Moyse ... (6)
Brandell, Daniel (5)
Wang, Ergang, 1981 (5)
Araujo, C. Moyses, 1 ... (5)
Carvalho, Rodrigo P. (5)
Wolkeba, Zewdneh Gen ... (5)
Marchiori, Cleber F. ... (4)
Strømme, Maria, 1970 ... (3)
Sjödin, Martin, 1974 ... (3)
Chen, Qiaonan, 1992 (3)
Araujo, Carlos Moyse ... (3)
Coutinho, Kaline (3)
Matias, Tiago Araujo (3)
Araki, Koiti (3)
Renault, Steven (3)
Oltean, Viorica Alin ... (3)
Koehler, Marlus (2)
Cremona, Marco (2)
Roman, Lucimara S. (2)
Rocco, Maria Luiza M ... (2)
Ahuja, Rajeev (2)
Edström, Kristina (2)
Woo, Han Young (2)
Mindemark, Jonas (2)
Moons, Ellen, profes ... (2)
Costa, Luciano T. (2)
Klautau, A. B. (2)
Petrilli, H. M. (2)
Wu, Jingnan, 1994 (2)
Yu, Donghong (2)
Kim, Bumjoon J. (2)
Grigoriev, Anton (2)
Toledo, Kalil Cristh ... (2)
Zaar, Felicia (2)
Emanuelsson, Rikard, ... (2)
Yin, Yuan (2)
Jin, Wentao (2)
Chen, Guangde (2)
Duan, Xiangyang (2)
Jia, Xubo (2)
Wu, Yelong (2)
Sousa, O. M. (2)
Assali, L. V. C. (2)
Lalic, M. , V (2)
visa färre...
Lärosäte
Karlstads universitet (47)
Uppsala universitet (46)
Chalmers tekniska högskola (9)
Linköpings universitet (3)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (51)
Teknik (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy