SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Archibald Sally) "

Sökning: WFRF:(Archibald Sally)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beale, Colin, et al. (författare)
  • Pyrodiversity interacts with rainfall to increase bird andmammal richness in African savannas
  • 2018
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 21:4, s. 557-567
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire is a fundamental process in savannas and is widely used for management. Pyrodiversity, variation in local fire characteristics, has been proposed as a driver of biodiversity although empirical evidence is equivocal. Using a new measure of pyrodiversity (Hempsonet al.), we undertook the first continent-wide assessment of how pyrodiversity affects biodiversity in protected areas across African savannas. The influence of pyrodiversity on bird and mammal species richness varied with rainfall: strongest support for a positive effect occurred in wet savannas (>650 mm/year), where species richness increased by 27% for mammals and 40% for birds in the most pyrodiverse regions. Range-restricted birds were most increased by pyrodiversity, suggesting the diversity of fire regimes increases the availability of rare niches. Our findings are significant because they explain the conflicting results found in previous studies of savannas. We argue that managing savanna landscapes to increase pyrodiversity is especially important in wet savannas.
  •  
2.
  • Biggs, Reinette (Oonsie), et al. (författare)
  • Strategies for managing complex social-ecological systems in the face of uncertainty : examples from South Africa and beyond
  • 2015
  • Ingår i: Ecology and Society. - 1708-3087. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Improving our ability to manage complex, rapidly changing social-ecological systems is one of the defining challenges of the 21st century. This is particularly crucial if large-scale poverty alleviation is to be secured without undermining the capacity of the environment to support future generations. To address this challenge, strategies that enable judicious management of socialecological systems in the face of substantive uncertainty are needed. Several such strategies are emerging from the developing body of work on complexity and resilience. We identify and discuss four strategies, providing practical examples of how each strategy has been applied in innovative ways to manage turbulent social-ecological change in South Africa and the broader region: (1) employ adaptive management or comanagement, (2) engage and integrate different perspectives, (3) facilitate self-organization, and (4) set safe boundaries to avoid system thresholds. Through these examples we aim to contribute a basis for further theoretical development, new teaching examples, and inspiration for developing innovative new management strategies in other regions that can help address the considerable sustainability challenges facing society globally.
  •  
3.
  • Ernst, Yolandi, et al. (författare)
  • The African Regional Greenhouse Gases Budget (2010–2019)
  • 2024
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 38:4
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2) project, we developed a comprehensive African Greenhouse gases (GHG) budget covering 2000 to 2019 (RECCAP1 and RECCAP2 time periods), and assessed uncertainties and trends over time. We compared bottom-up process-based models, data-driven remotely sensed products, and national GHG inventories with top-down atmospheric inversions, accounting also for lateral fluxes. We incorporated emission estimates derived from novel methodologies for termites, herbivores, and fire, which are particularly important in Africa. We further constrained global woody biomass change products with high-quality regional observations. During the RECCAP2 period, Africa's carbon sink capacity is decreasing, with net ecosystem exchange switching from a small sink of −0.61 ± 0.58 PgC yr−1 in RECCAP1 to a small source in RECCAP2 at 0.16 (−0.52/1.36) PgC yr−1. Net CO2 emissions estimated from bottom-up approaches were 1.6 (−0.9/5.8) PgCO2 yr−1, net CH4 were 77 (56.4/93.9) TgCH4 yr−1 and net N2O were 2.9 (1.4/4.9) TgN2O yr−1. Top-down atmospheric inversions showed similar trends. Land Use Change emissions increased, representing one of the largest contributions at 1.7 (0.8/2.7) PgCO2eq yr−1 to the African GHG budget and almost similar to emissions from fossil fuels at 1.74 (1.53/1.96) PgCO2eq yr−1, which also increased from RECCAP1. Additionally, wildfire emissions decreased, while fuelwood burning increased. For most component fluxes, uncertainty is large, highlighting the need for increased efforts to address Africa-specific data gaps. However, for RECCAP2, we improved our overall understanding of many of the important components of the African GHG budget that will assist to inform climate policy and action.
  •  
4.
  • Hantson, Stijn, et al. (författare)
  • Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:7, s. 3299-3318
  • Tidskriftsartikel (refereegranskat)abstract
    • Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes and the carbon cycle and to infer relationships between climate, land use and fire. However, differences in model structure and parameterizations, in both the vegetation and fire components of these models, could influence overall model performance, and to date there has been limited evaluation of how well different models represent various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation of state-of-the-art global fire models, in order to improve projections of fire characteristics and fire impacts on ecosystems and human societies in the context of global environmental change. Here we perform a systematic evaluation of historical simulations made by nine FireMIP models to quantify their ability to reproduce a range of fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual total burnt area (39-536 Mha) and global annual fire carbon emission (0.91-4.75 Pg C yr-1) for modern conditions (2002-2012), but most of the range in burnt area is within observational uncertainty (345-468 Mha). Benchmarking scores indicate that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The models also reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and are largely unable to represent interannual variations in burnt area. However, models that represent cropland fires see improved simulation of fire seasonality in the Northern Hemisphere. The three FireMIP models which explicitly simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in key regions, and this results in an underestimation of burnt area. The correct representation of spatial and seasonal patterns in vegetation appears to correlate with a better representation of burnt area. The two older fire models included in the FireMIP ensemble (LPJ-GUESS-GlobFIRM, MC2) clearly perform less well globally than other models, but it is difficult to distinguish between the remaining ensemble members; some of these models are better at representing certain aspects of the fire regime; none clearly outperforms all other models across the full range of variables assessed.
  •  
5.
  • Hantson, Stijn, et al. (författare)
  • The status and challenge of global fire modelling
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:11, s. 3359-3375
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.
  •  
6.
  • Pereira, Laura M., 1985-, et al. (författare)
  • Equity and justice should underpin the discourse on tipping points
  • 2024
  • Ingår i: Earth System Dynamics. - 2190-4979 .- 2190-4987. ; 15:2, s. 341-366
  • Forskningsöversikt (refereegranskat)abstract
    • Radical and quick transformations towards sustainability will be fundamental to achieving a more sustainable future. However, deliberate interventions to reconfigure systems will result in winners and losers, with the potential for greater or lesser equity and justice outcomes. Positive tipping points (PTPs) have been proposed as interventions in complex systems with the aim to (a) reduce the likelihood of negative Earth system tipping points and/or (b) increase the likelihood of achieving just social foundations. However, many narratives around PTPs often do not take into account the entire spectrum of impacts the proposed alternatives could have or still rely on narratives that maintain current unsustainable behaviours and marginalize many people (i.e. do not take “b” into account). One such example is the move from petrol-based to electric vehicles. An energy transition that remains based on natural resource inputs from the Global South must be unpacked with an equity and justice lens to understand the true cost of this transition. There are two arguments why a critical engagement with these and other similar proposals needs to be made. First, the idea of transitioning through a substitution (e.g. of fuel) while maintaining the system structure (e.g. of private vehicles) may not necessarily be conceived as the kind of radical transformation being called for by global scientific bodies like the Intergovernmental Panel on Climate Change (IPCC) and Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Second, and probably more importantly, the question of positive for whom, positive where, and positive how must be considered. In this paper, we unpack these narratives using a critical decolonial view from the south and outline their implications for the concept of tipping points.
  •  
7.
  • Probert, James R., et al. (författare)
  • Anthropogenic modifications to fire regimes in the wider Serengeti-Mara ecosystem
  • 2019
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 25:10, s. 3406-3423
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti-Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti-Mara show high spatial variability-with number of fires and ignition date mirroring mean annual precipitation. The short-term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Archibald, Sally (7)
Sitch, Stephen (3)
Ciais, Philippe (2)
Arneth, Almut (2)
Hickler, Thomas (2)
Harrison, Sandy P. (2)
visa fler...
Anderson, T. Michael (2)
Lasslop, Gitta (2)
Melton, Joe R. (2)
Tagesson, Torbern (1)
Achieng, Therezah (1)
Zheng, Bo (1)
van der Werf, Guido ... (1)
Selomane, Odirilwe (1)
Chevallier, Frédéric (1)
Artaxo, Paulo (1)
Friedlingstein, Pier ... (1)
Obura, David (1)
Rodriguez-Veiga, Ped ... (1)
Spessa, Allan (1)
Pereira, Laura M., 1 ... (1)
Rocha, Juan, 1984- (1)
Sitas, Nadia (1)
Coetzer, Kaera (1)
Beale, Colin (1)
Courtney Mustaphi, C ... (1)
Morrison, Thomas (1)
Dobson, Andrew (1)
Donaldson, Jason (1)
Hempson, Gaeth (1)
Probert, James (1)
Parr, Catherine (1)
Villasante, Sebastia ... (1)
Merbold, Lutz (1)
Biggs, Reinette (Oon ... (1)
Scholes, Robert J. (1)
Rhode, Clint (1)
Kunene, Lucky Makhos ... (1)
Mutanga, Shingirirai ... (1)
Nkuna, Nghamula (1)
Ocholla, Peter Omond ... (1)
Phadima, Lehlohonolo ... (1)
Nieradzik, Lars (1)
Mitchard, Edward (1)
Kaplan, Jed O. (1)
Lauerwald, Ronny (1)
Lapola, David M. (1)
Pinho, Patrícia (1)
Sumaila, U. Rashid (1)
Castro, Azucena, 198 ... (1)
visa färre...
Lärosäte
Lunds universitet (3)
Uppsala universitet (2)
Stockholms universitet (2)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Samhällsvetenskap (2)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy