SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ardell David H) "

Sökning: WFRF:(Ardell David H)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
2.
  • Alsmark, Cecilia M., et al. (författare)
  • The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae
  • 2004
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 101:26, s. 9716-9721
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the complete genomes of two human pathogens, Bartonella quintana (1,581,384 bp) and Bartonella henselae (1,931,047 bp). The two pathogens maintain several similarities in being transmitted by insect vectors, using mammalian reservoirs, infecting similar cell types (endothelial cells and erythrocytes) and causing vasculoproliferative changes in immunocompromised hosts. A primary difference between the two pathogens is their reservoir ecology. Whereas B. quintana is a specialist, using only the human as a reservoir, B. henselae is more promiscuous and is frequently isolated from both cats and humans. Genome comparison elucidated a high degree of overall similarity with major differences being B. henselae specific genomic islands coding for filamentous hemagglutinin, and evidence of extensive genome reduction in B. quintana, reminiscent of that found in Rickettsia prowazekii. Both genomes are reduced versions of chromosome I from the highly related pathogen Brucella melitensis. Flanked by two rRNA operons is a segment with similarity to genes located on chromosome II of B. melitensis, suggesting that it was acquired by integration of megareplicon DNA in a common ancestor of the two Bartonella species. Comparisons of the vector-host ecology of these organisms suggest that the utilization of host-restricted vectors is associated with accelerated rates of genome degradation and may explain why human pathogens transmitted by specialist vectors are outnumbered by zoonotic agents, which use vectors of broad host ranges.
  •  
3.
  •  
4.
  • Ardell, David H., et al. (författare)
  • TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA sythetase
  • 2006
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 34:3, s. 893-904
  • Tidskriftsartikel (refereegranskat)abstract
    • We present TFAM, an automated, statistical method to classify the identity of tRNAs. TFAM, currently optimized for bacteria, classifies initiator tRNAs and predicts the charging identity of both typical and atypical tRNAs such as suppressors with high confidence. We show statistical evidence for extensive variation in tRNA identity determinants among bacterial genomes due to variation in overall tDNA base content. With TFAM we have detected the first case of eukaryotic-like tRNA identity rules in bacteria. An alpha-proteobacterial clade encompassing Rhizobiales, Caulobacter crescentus and Silicibacter pomeroyi, unlike a sister clade containing the Rickettsiales, Zymomonas mobilis and Gluconobacter oxydans, uses the eukaryotic identity element A73 instead of the highly conserved prokaryotic element C73. We confirm divergence of bacterial histidylation rules by demonstrating perfect covariation of alpha-proteobacterial tRNA(His) acceptor stems and residues in the motif IIb tRNA-binding pocket of their histidyl-tRNA synthetases (HisRS). Phylogenomic analysis supports lateral transfer of a eukaryotic-like HisRS into the alpha-proteobacteria followed by in situ adaptation of the bacterial tDNA(His) and identity rule divergence. Our results demonstrate that TFAM is an effective tool for the bioinformatics, comparative genomics and evolutionary study of tRNA identity.
  •  
5.
  • Ardell, David H, et al. (författare)
  • The genomic pattern of tDNA operon expression in E. coli
  • 2005
  • Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 1:1, s. e12-
  • Tidskriftsartikel (refereegranskat)abstract
    • In fast-growing microorganisms, a tRNA concentration profile enriched in major isoacceptors selects for the biased usage of cognate codons. This optimizes translational rate for the least mass invested in the translational apparatus. Such translational streamlining is thought to be growth-regulated, but its genetic basis is poorly understood. First, we found in reanalysis of the E. coli tRNA profile that the degree to which it is translationally streamlined is nearly invariant with growth rate. Then, using least squares multiple regression, we partitioned tRNA isoacceptor pools to predicted tDNA operons from the E. coli K12 genome. Co-expression of tDNAs in operons explains the tRNA profile significantly better than tDNA gene dosage alone. Also, operon expression increases significantly with proximity to the origin of replication, oriC, at all growth rates. Genome location explains about 15% of expression variation in a form, at a given growth rate, that is consistent with replication-dependent gene concentration effects. Yet the change in the tRNA profile with growth rate is less than would be expected from such effects. We estimated per-copy expression rates for all tDNA operons that were consistent with independent estimates for rDNA operons. We also found that tDNA operon location, and the location dependence of expression, were significantly different in the leading and lagging strands. The operonic organization and genomic location of tDNA operons are significant factors influencing their expression. Nonrandom patterns of location and strandedness shown by tDNA operons in E. coli suggest that their genomic architecture may be under selection to satisfy physiological demand for tRNA expression at high growth rates.
  •  
6.
  • Chang, W.-J., et al. (författare)
  • Intron Evolution and Information processing in the DNA polymerase alpha gene in spirotrichous ciliates : A hypothesis for interconversion between DNA and RNA deletion
  • 2007
  • Ingår i: Biology Direct. - : Springer Science and Business Media LLC. - 1745-6150. ; 2, s. 6-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The somatic DNA molecules of spirotrichous ciliates are present as linear chromosomes containing mostly single-gene coding sequences with short 5' and 3' flanking regions. Only a few conserved motifs have been found in the flanking DNA. Motifs that may play roles in promoting and/or regulating transcription have not been consistently detected. Moreover, comparing subtelomeric regions of 1,356 end-sequenced somatic chromosomes failed to identify more putatively conserved motifs. RESULTS: We sequenced and compared DNA and RNA versions of the DNA polymerase alpha (pol alpha) gene from nine diverged spirotrichous ciliates. We identified a G-C rich motif aaTACCGC(G/C/T) upstream from transcription start sites in all nine pol alpha orthologs. Furthermore, we consistently found likely polyadenylation signals, similar to the eukaryotic consensus AAUAAA, within 35 nt upstream of the polyadenylation sites. Numbers of introns differed among orthologs, suggesting independent gain or loss of some introns during the evolution of this gene. Finally, we discuss the occurrence of short direct repeats flanking some introns in the DNA pol alpha genes. These introns flanked by direct repeats resemble a class of DNA sequences called internal eliminated sequences (IES) that are deleted from ciliate chromosomes during development. CONCLUSIONS: Our results suggest that conserved motifs are present at both 5' and 3' untranscribed regions of the DNA pol alpha genes in nine spirotrichous ciliates. We also show that several independent gains and losses of introns in the DNA pol alpha genes have occurred in the spirotrichous ciliate lineage. Finally, our statistical results suggest that proven introns might also function in an IES removal pathway. This could strengthen a recent hypothesis that introns evolve into IESs, explaining the scarcity of introns in spirotrichs. Alternatively, the analysis suggests that ciliates might occasionally use intron splicing to correct, at the RNA level, failures in IES excision during developmental DNA elimination.
  •  
7.
  • Freyhult, Eva, et al. (författare)
  • New computational methods reveal tRNA identity element divergence between Proteobacteria and Cyanobacteria
  • 2007
  • Ingår i: Biochimie. - : Elsevier BV. - 0300-9084 .- 1638-6183. ; 89:10, s. 1276-1288
  • Tidskriftsartikel (refereegranskat)abstract
    • There are at least 21 subfunctional classes of tRNAs in most cells that, despite a very highly conserved and compact common structure, must interact specifically with different cliques of proteins or cause grave organismal consequences. Protein recognition of specific tRNA substrates is achieved in part through class-restricted tRNA features called tRNA identity determinants. In earlier work we used TFAM, a statistical classifier of tRNA function, to show evidence of unexpectedly large diversity among bacteria in tRNA identity determinants. We also created a data reduction technique called function logos to visualize identity determinants for a given taxon. Here we show evidence that determinants for lysylated isoleucine tRNAs are not the same in Proteobacteria as in other bacterial groups including the Cyanobacteria. Consistent with this, the lysylating biosynthetic enzyme TilS lacks a C-terminal domain in Cyanobacteria that is present in Proteobacteria. We present here, using function logos, a map estimating all potential identity determinants generally operational in Cyanobacteria and Proteobacteria. To further isolate the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria, we created two new data reduction visualizations to contrast sequence and function logos between two taxa. One, called Information Difference logos (ID logos), shows the evolutionary gain or retention of functional information associated to features in one lineage. The other, Kullback–Leibler divergence Difference logos (KLD logos), shows recruitments or shifts in the functional associations of features, especially those informative in both lineages. We used these new logos to specifically isolate and visualize the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria. Our graphical results point to numerous differences in potential tRNA identity determinants between these groups. Although more differences in general are explained by shifts in functional association rather than gains or losses, the apparent identity differences in lysylated isoleucine tRNAs appear to have evolved through both mechanisms.
  •  
8.
  • Illergård, Kristoffer, et al. (författare)
  • Structure is three to ten times more conserved than sequence-A study of structural response in protein cores
  • 2009
  • Ingår i: Proteins. - : Wiley. - 0887-3585 .- 1097-0134. ; 77:3, s. 499-508
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein structures change during evolution in response to mutations. Here, we analyze the mapping between sequence and structure in a set of structurally aligned protein domains. To avoid artifacts, we restricted our attention only to the core components of these structures. We found that on average, using different measures of structural change, protein cores evolve linearly with evolutionary distance (amino acid substitutions per site). This is true irrespective of which measure of structural change we used, whether RMSD or discrete structural descriptors for secondary structure, accessibility, or contacts. This linear response allows us to quantify the claim that structure is more conserved than sequence. Using structural alphabets of similar cardinality to the sequence alphabet, structural cores evolve three to ten times slower than sequences. Although we observed an average linear response, we found a wide variance. Different domain families varied fivefold in structural response to evolution. An attempt to categorically analyze this variance among subgroups by structural and functional category revealed only one statistically significant trend. This trend can be explained by the fact that beta-sheets change faster than alpha-helices, most likely due to that they are shorter and that change occurs at the ends of the secondary structure elements. Proteins 2009; 77:499-508. (C) 2009 Wiley-Liss, Inc.
  •  
9.
  • Jin, Haining, et al. (författare)
  • Influences on gene expression in vivo by a Shine-Dalgarno sequence.
  • 2006
  • Ingår i: Mol Microbiol. - : Wiley. - 0950-382X .- 1365-2958. ; 60:2, s. 480-92
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Shine-Dalgarno (SD+: 5'-AAGGAGG-3') sequence anchors the mRNA by basepairing to the 16S rRNA in the small ribosomal subunit during translation initiation. We have here comparedhow an SD+ sequence influences gene expression, if located upstream or downstream of an initiation codon.The positive effect of an upstream SD+ is confirmed. A downstream SD+ gives decreased gene expression.This effect is also valid for appropriately modified natural Escherichia coli genes. If an SD+ is placedbetween two potential initiation codons, initiation takes place predominantly at the second start site.The first start site is activated if the distance between this site and the downstream SD+ is enlargedand/or if the second start site is weakened. Upstream initiation is eliminated if a stable stem-loopstructure is placed between this SD+ and the upstream start site. The results suggest that the two startsites compete for ribosomes that bind to an SD+ located between them. A minor positive contribution toupstream initiation resulting from 3' to 5' ribosomal diffusion along the mRNA is suggested. Analysisof the E. coli K12 genome suggests that the SD+ or SD-like sequences are systematically avoided in theearly coding region suggesting an evolutionary significance.
  •  
10.
  • Larsson, Pontus, et al. (författare)
  • De novo search for non-coding RNA genes in the AT-rich genome of Dictyostelium discoideum : Performance of Markov-dependent genome feature scoring
  • 2008
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 18:6, s. 888-899
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome data are increasingly important in the computational identification of novel regulatory non-coding RNAs (ncRNAs). However, most ncRNA gene-finders are either specialized to well-characterized ncRNA gene families or require comparisons of closely related genomes. We developed a method for de novo screening for ncRNA genes with a nucleotide composition that stands out against the background genome based on a partial sum process. We compared the performance when assuming independent and first-order Markov-dependent nucleotides, respectively, and used Karlin-Altschul and Karlin-Dembo statistics to evaluate the significance of hits. We hypothesized that a first-order Markov-dependent process might have better power to detect ncRNA genes since nearest-neighbor models have been shown to be successful in predicting RNA structures. A model based on a first-order partial sum process (analyzing overlapping dinucleotides) had better sensitivity and specificity than a zeroth-order model when applied to the AT-rich genome of the amoeba Dictyostelium discoideum. In this genome, we detected 94% of previously known ncRNA genes (at this sensitivity, the false positive rate was estimated to be 25% in a simulated background). The predictions were further refined by clustering candidate genes according to sequence similarity and/or searching for an ncRNA-associated upstream element. We experimentally verified six out of 10 tested ncRNA gene predictions. We conclude that higher-order models, in combination with other information, are useful for identification of novel ncRNA gene families in single-genome analysis of D. discoideum. Our generalizable approach extends the range of genomic data that can be searched for novel ncRNA genes using well-grounded statistical methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy