SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arendse Nikki) "

Sökning: WFRF:(Arendse Nikki)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdalla, E., et al. (författare)
  • Cosmology intertwined : A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies
  • 2022
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier BV. - 2214-4048 .- 2214-4056. ; 34, s. 49-211
  • Tidskriftsartikel (refereegranskat)abstract
    • The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions. 
  •  
2.
  • Goobar, Ariel, 1962-, et al. (författare)
  • Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky
  • 2023
  • Ingår i: Nature Astronomy. - 2397-3366. ; 7:9, s. 1098-1107
  • Tidskriftsartikel (refereegranskat)abstract
    • Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.
  •  
3.
  • Kodi Ramanah, Doogesh, et al. (författare)
  • AI-driven spatio-temporal engine for finding gravitationally lensed type Ia supernovae
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 512:4, s. 5404-5417
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a spatio-temporal AI framework that concurrently exploits both the spatial and time-variable features of gravitationally lensed supernovae in optical images to ultimately aid in future discoveries of such exotic transients in wide-field surveys. Our spatio-temporal engine is designed using recurrent convolutional layers, while drawing from recent advances in variational inference to quantify approximate Bayesian uncertainties via a confidence score. Using simulated Young Supernova Experiment (YSE) images of lensed and non-lensed supernovae as a showcase, we find that the use of time-series images adds relevant information from time variability of spatial light distribution of partially blended images of lensed supernova, yielding a substantial gain of around 20 per cent in classification accuracy over single-epoch observations. Preliminary application of our network to mock observations from the Legacy Survey of Space and Time (LSST) results in detections with accuracy reaching around 99 per cent. Our innovative deep learning machinery is versatile and can be employed to search for any class of sources that exhibit variability both in flux and spatial distribution of light.
  •  
4.
  • Pierel, J. D. R., et al. (författare)
  • LensWatch. I. Resolved HST Observations and Constraints on the Strongly Lensed Type Ia Supernova 2022qmx (SN Zwicky)
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of magnitude with the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope. The latest such discovery is of the quadruply imaged Type Ia SN 2022qmx (aka, SN Zwicky) at z = 0.3544. SN Zwicky was discovered by the Zwicky Transient Facility in spatially unresolved data. Here we present follow-up Hubble Space Telescope observations of SN Zwicky, the first from the multicycle LensWatch (www.lenswatch.org) program. We measure photometry for each of the four images of SN Zwicky, which are resolved in three WFC3/UVIS filters (F475W, F625W, and F814W) but unresolved with WFC3/IR F160W, and present an analysis of the lensing system using a variety of independent lens modeling methods. We find consistency between lens-model-predicted time delays (less than or similar to 1 day), and delays estimated with the single epoch of Hubble Space Telescope colors (less than or similar to 3.5 days), including the uncertainty from chromatic microlensing (similar to 1-1.5 days). Our lens models converge to an Einstein radius of theta(E) = 0.168 (+0.009)(-0.005) the smallest yet seen in a lensed SN system. The standard candle nature of SN Zwicky provides magnification estimates independent of the lens modeling that are brighter than predicted by similar to 1.7 (-0.6) (+0.8) mag and similar to 0.9 (-0.6) (+0.8) mag for two of the four images, suggesting significant microlensing and/or additional substructure beyond the flexibility of our image-position mass models.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy