SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arenillas Ignacio) "

Sökning: WFRF:(Arenillas Ignacio)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schmitz, Birger, et al. (författare)
  • The Global Stratotype Sections and Points for the bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene) stages at Zumaia, Spain
  • 2011
  • Ingår i: Episodes. - 0705-3797. ; 34:4, s. 220-243
  • Tidskriftsartikel (refereegranskat)abstract
    • The global stratotype sections and points for the bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene) stages have been defined in the coastal cliff along the Itzurun Beach at the town of Zumaia in the Basque Country, northern Spain. In the hemipelagic section exposed at Zumaia the base of the Selandian Stage has been placed at the base of the Itzurun Formation, ca. 49 m above the Cretaceous/Paleogene boundary. At the base of the Selandian, marls replace the succession of Danian red limestone and limestone-marl couplets. The best marine, global correlation criterion for the basal Selandian is the second radiation of the important calcareous nannofossil group, the fasciculiths. Species such as Fasciculithus ulii, F. billii, F. janii, F. involutus, F. pileatus and F. tympaniformis have their first appearance in the interval from a few decimetres below up to 1.1 m above the base of the Selandian. The marker species for nannofossil Zone NP5, F. tympaniformis, first occurs 1.1 m above the base. Excellent cyclostratigraphy and magnetostratigraphy in the section creates farther correlation potential, with the base of the Selandiatz occuring 30 precession cycles (630 kyr) above the top of magnetochron C27n. Profound changes in sedimentology related to a major sea-level fall characterize the Danian-Selandian transition in sections along the margins of the North Atlantic. The base of the Thanetian Stage is placed in the same section ca. 78 m above the Cretaceous/Paleogene boundary. It is defined at a level 2.8 m or eight precession cycles above the base of the core of the distinct clay-rich interval associated with the Mid-Paleocene Biotic Event, and it corresponds to the base of magnetochron C26n in the section. The base of the Thanetian is not associated with any significant change in marine micro-fauna or flora. The calcareous nannofossil Zone NP6, marked by the first occurrence of Heliolithus kleinpelli starts ca. 6.5 m below the base of the Thanetian. The definitions of the global stratotype points for the bases of the Selandian and Thanetian stages are in good agreements with the definitions in the historical stratotype sections in Denmark and England, respectively.
  •  
2.
  • BERMÚDEZ,, Hermann Darío, et al. (författare)
  • The Cretaceous/Paleogene boundary deposits on Gorgonilla Island
  • 2018
  • Ingår i: The Geology of Colombia: Volume  3   Paleogene – Neogene. - Bogota : Servicio Geológico Colombiano. ; , s. 1-34
  • Bokkapitel (refereegranskat)abstract
    • A ~20 mm thick spherule bed representing Chicxulub impact ejecta deposits and marking the Cretaceous/Paleogene (K/Pg) boundary was recently discovered on Gorgonilla Island (Gorgona National Natural Park, Pacific of Colombia). This discovery represents the first confirmed record of the K/Pg event in Colombia, South America and the eastern Pacific Ocean. The deposit consists of extraordinarily well–preserved glass spherules (microtektites and microkrystites) reaching 1.1 mm in diameter. Importantly, the Gorgonilla spherule bed is unique relative to other K/Pg boundary sites in that up to 90% of the spherules are intact and not devitrified, and the bed is virtually devoid of lithic fragments and microfossils. The spherules were deposited in a deep marine environment, possibly below the calcite compensation depth. The preservation, normal size–gradation, presence of fine textures within the spherules, and absence of bioturbation or traction transport indicate that the Gorgonilla spherules settled within a water column with minimal disturbance. Thus, the spherule bed may represent one of the first parautochthonous primary deposits of the Chicxulub impact known to date. 40Ar/39Ar dating and micropaleontological analysis reveal that the Gorgonilla spherule bed resulted from the Chicxulub impact. Intense soft–sediment deformation and bed disruption in Maastrichtian sediments of the Gorgonilla Island K/Pg section provide evidence for seismic activity triggered by the Chicxulub bolide impact, 66 million years ago. It is also notable that the basal deposits of the Danian in the Colombian locality present the first evidence of a recovery vegetation, characterized by ferns from a tropical habitat, shortly following the end–Cretaceous event.
  •  
3.
  • Bermúdez, Hermann, et al. (författare)
  • The Cretaceous/Paleogene Boundary Deposits on Gorgonilla Island
  • 2019. - 1
  • Ingår i: <em>The Geology of Colombia, Volume 3 Paleogene – Neogene </em><em></em>. - Bogota : Servi­cio Geológico Colombiano. ; , s. 1-19
  • Bokkapitel (refereegranskat)abstract
    • A ca. 20 mm thick spherule bed representing Chicxulub impact ejecta deposits and marking the Cretaceous/Paleogene (K/Pg) boundary was recently discovered on Gorgonilla Island (Gorgona National Natural Park, Pacific of Colombia). This discovery represents the first confirmed record of the K/Pg event in Colombia, South America and the eastern Pacific Ocean. The deposit consists of extraordinarily well–preserved glass spherules (microtektites and microkrystites) reaching 1.1 mm in diameter. Importantly, the Gorgonilla spherule bed is unique relative to other K/Pg boundary sites in that up to 90% of the spherules are intact and not devitrified, and the bed is virtually devoid of lithic fragments and microfossils. The spherules were deposited in a deep marine environment, possibly below the calcite compensation depth. The preservation, normal size–gradation, presence of fine textures within the spherules, and absence of bioturbation or traction transport indicate that the Gorgonilla spherules settled within a water column with minimal disturbance. The spherule bed may represent one of the first parautochthonous primary deposits of the Chicxulub impact known to date. 40Ar/39Ar dating and micropaleontological analysis reveal that the Gorgonilla spherule bed resulted from the Chicxulub impact. Intense soft–sediment deformation and bed disruption in Maastrichtian sediments of the Gorgonilla Island K/Pg section provide evidence for seismic activity triggered by the Chicxulub bolide impact, 66 million years ago. It is also notable that the basal deposits of the Danian in the Colombian locality present the first evidence of a recovery vegetation, characterized by ferns from a tropical habitat, shortly following the end–Cretaceous event.
  •  
4.
  • Renne, Paul R, et al. (författare)
  • Multi-proxy record of the Chicxulub impact at the Cretaceous-Paleogene boundary from Gorgonilla Island, Colombia
  • 2018
  • Ingår i: Geology. - Denver : Geological Society of America. - 0091-7613 .- 1943-2682. ; 46, s. 547-550
  • Tidskriftsartikel (refereegranskat)abstract
    • A 40 m stratigraphic section at Gorgonilla Island, Colombia, provides a unique deepmarine, low-latitude, Southern Hemisphere record of events related to the end-Cretaceous Chicxulub impact and the global Cretaceous/Paleogene boundary (KPB). The KPB is marked by a 20-mm-thick, densely packed spherule bed as defined by planktic foraminifera, in contrast to complex relationships found in high-energy, impact-proximal sites in the Gulf of Mexico and Caribbean basins. The absence of basal Danian foraminiferal Zone P0 may indicate a possible hiatus of <10 ka immediately above the spherule bed, but is most probably an artifact of deposition below the calcite compensation depth as suggested by the nearly complete absence of calcareous fossils for 20 m below the Zone Pα. A weighted mean 40Ar/39Ar age of 66.051 ± 0.031 Ma for 25 fresh glassy spherules unequivocally establishes both their derivation from Chicxulub, and the association between the impact and the KPB. The spherule bed, and Maastrichtian strata below it, display soft-sediment deformation features consistent with strong seismic motion, suggesting that seismic activity in the immediate aftermath of the Chicxulub impact continued for weeks. We discovered a fern-spike immediately above the spherule bed, representing the first record of this pioneer vegetation from the South American continent, and from a low-latitude (tropical) environment.
  •  
5.
  • Schulte, Peter, et al. (författare)
  • Cretaceous Extinctions: Evidence Overlooked Response
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 328:5981, s. 975-976
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Schulte, Peter, et al. (författare)
  • The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 327:5970, s. 1214-1218
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cretaceous-Paleogene boundary similar to 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy