SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Armiento Rickard Associate Professor 1976 ) "

Search: WFRF:(Armiento Rickard Associate Professor 1976 )

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Li, Huanyu, 1992- (author)
  • Ontology-Driven Data Access and Data Integration with an Application in the Materials Design Domain
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • The Semantic Web aims to make data on the web machine-readable by introducing semantics to the data. Ontologies are one of the critical technologies in the Semantic Web. Ontologies, which provide a formal definition of a domain of interest, can play an important role in enabling semantics-aware data access and data integration over heterogeneous data sources. Traditionally, ontology-based data access and integration methods focus on data that follows relational data models. However, in some domains, such as materials design, the models that data follows and the methods by which it is shared differ today. Data may be based on different data models (i.e., relational models and non-relational models) and may be shared in different ways (e.g., as tabular data via SQL queries or API (Application Programming Interface) requests, or as JSON-formatted data via API requests). To address these challenges, conventional ontology-based data access and integration approaches must be adapted. The recently developed GraphQL, a framework for building APIs, is an interesting candidate for providing such an approach, although the use of GraphQL for integration has not yet been studied.In this thesis, we propose a GraphQL-based framework for data access and integration. As part of this framework, we propose and implement a novel approach that enables automatic generation of GraphQL servers based on ontologies rather than building them from scratch. The framework is evaluated via experiments based on a synthetic benchmark dataset. Further, we utilize the field of materials design as a target domain to evaluate the feasibility of our framework by showing the use of the framework for the Open Databases Integration for Materials Design (OPTIMADE), which is a community effort aiming to develop a specification for a common API to make materials databases interoperable. At the beginning of this work, no ontologies existed for the domain of computational materials databases. As our approach requires the use of an ontology, we developed one: the Materials Design Ontology (MDO). Furthermore, when new databases are added or new kinds of data are added to existing databases, the coverage of the ontology driving the GraphQL server generation may need to be enlarged. Therefore, we study how ontologies can be extended and propose an approach based on phrase-based topic modeling, formal topical concept analysis and domain expert validation. In addition to extending MDO, we also use this approach to extend two ontologies in the nanotechnology domain.
  •  
2.
  • Davidsson, Joel, 1989- (author)
  • Color Centers in Semiconductors for Quantum Applications : A High-Throughput Search of Point Defects in SiC
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics.First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes.Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.
  •  
3.
  • Gharavi, Mohammad Amin (author)
  • Nitride Thin Films for Thermoelectric Applications : Synthesis, Characterization and Theoretical Predictions
  • 2017
  • Licentiate thesis (other academic/artistic)abstract
    • Thermoelectrics is the reversible process which transforms a temperature gradient across a material into an external voltage through a phenomenon known as the Seebeck effect. This has resulted in niche applications such as solid-state cooling for electronic and optoelectronic devices which exclude the need for a coolant or any moving parts and long-lasting, maintenance-free radioisotope thermoelectric generators used for deep-space exploration. However, the high price and low efficiency of thermoelectric generators have prompted scientists to search for new materials and/or methods to improve the efficiency of the already existing ones. Thermoelectric efficiency is governed by the dimensionless figure of merit ??, which depends on the electrical conductivity, thermal conductivity and Seebeck coefficient value of the material and has rarely surpassed unity.In order to address these issues, research conducted on early transition metal nitrides spearheaded by cubic scandium nitride (ScN) thin films showed promising results with high power factors close to 3000 μWm−1K−2 at 500 °C. In this thesis, rock-salt cubic chromium nitride (CrN) deposited in the form of thin films by reactive magnetron sputtering was chosen for its large Seebeck coefficient of approximately -200 μV/K and low thermal conductivity between 2 and 4 Wm−1K−1. The results show that CrN in single crystal form has a low electrical resistivity below 1 mΩcm, a Seebeck coefficient value of -230 μV/K and a power factor close to 5000 μWm−1K−2 at room temperature. These promising results could lead to CrN based thermoelectric modules which are cheaper and more stable compared to traditional thermoelectric material such as bismuth telluride (Bi2Te3) and lead telluride (PbTe).In addition, the project resulting this thesis was prompted to investigate prospective ternary nitrides equivalent to ScN with (hopefully) better thermoelectric properties. Scandium nitride has a relatively high thermal conductivity value (close to 10 Wm−1K−1), resulting in a low ??. A hypothetical ternary equivalent to ScN may have a similar electronic band structure and large power factor, but with a lower thermal conductivity value leading to better thermoelectric properties. Thus the elements magnesium, titanium, zirconium and hafnium were chosen for this purpose. DFT calculations were used to simulate TiMgN2, ZrMgN2 and HfMgN2. The results show the MeMgN2 stoichiometry to be stable, with two rivaling crystal structures: trigonal NaCrS2 and monoclinic LiUN2.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view