SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arregui L.) "

Sökning: WFRF:(Arregui L.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Liebana, Raquel, 1986, et al. (författare)
  • Unravelling the interactions among microbial populations found in activated sludge during biofilm formation
  • 2016
  • Ingår i: FEMS Microbiology Ecology. - : Oxford University Press (OUP). - 1574-6941 .- 0168-6496. ; 92:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Microorganisms colonize surfaces and develop biofilms through interactions that are not yet thoroughly understood, with important implications for water and wastewater systems. This study investigated the interactions between N-acyl homoserine lactone (AHL)-producing bacteria, yeasts and protists, and their contribution to biofilm development. Sixty-one bacterial strains were isolated from activated sludge and screened for AHL production, with Aeromonas sp. found to be the dominant AHL producer. Shewanella xiamenensis, Aeromonas allosaccharophila, Acinetobacter junii and Pseudomonas aeruginosa recorded the highest adherence capabilities, with S. xiamenensis being the most effective in surface colonization. Additionally, highly significant interactions (i.e. synergic or antagonistic) were described for dual and multistrain mixtures of bacterial strains (P. aeruginosa, S. xiamenensis, A. junii and Pseudomonas stutzeri), as well as for strongly adherent bacteria co-cultured with yeasts. In this last case, the adhered biomass in co-cultures was lower than the monospecific biofilms of bacteria and yeast, with biofilm observations by microscopy suggesting that bacteria had an antagonist effect on the whole or part of the yeast population. Finally, protist predation by Euplotes sp. and Paramecium sp. on Aeromonas hydrophila biofilms not only failed to reduce biofilm formation, but also recorded unexpected results leading to the development of aggregates of high density and complexity.Single- and multi-species microbial biofilms developed by different prokaryotic/eukaryotic microorganisms were investigated in order to study the interactions across populations and their contribution to biofilm development.Single- and multi-species microbial biofilms developed by different prokaryotic/eukaryotic microorganisms were investigated in order to study the interactions across populations and their contribution to biofilm development.
  •  
3.
  • Xie, Meng, et al. (författare)
  • Secondary ossification center induces and protects growth plate structure
  • 2020
  • Ingår i: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy