SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arvaniti Anastasia) "

Sökning: WFRF:(Arvaniti Anastasia)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hadzidimitriou, Anastasia, et al. (författare)
  • Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia
  • 2009
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 113:2, s. 403-411
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed somatic hypermutation (SHM) patterns and secondary rearrangements involving the immunoglobulin (IG) light chain (LC) gene loci in 725 patients with chronic lymphocytic leukemia (CLL). Important differences regarding mutational load and targeting were identified in groups of sequences defined by IGKV/IGLV gene usage and/or K/LCDR3 features. Recurrent amino acid (AA) changes in the IGKV/IGLV sequences were observed in subsets of CLL cases with stereotyped B-cell receptors (BCRs), especially those expressing IGHV3-21/IGLV3-21 and IGHV4-34/IGKV2-30 BCRs. Comparison with CLL LC sequences carrying heterogeneous K/LCDR3s or non-CLL LC sequences revealed that distinct amino acid changes appear to be "CLL-biased." Finally, a significant proportion of CLL cases with monotypic LC expression were found to carry multiple potentially functional LC rearrangements, alluding to active, (auto) antigen-driven receptor editing. In conclusion, SHM targeting in CLL LCs is just as precise and, likely, functionally driven as in heavy chains. Secondary LC gene rearrangements and subset-biased mutations in CLL LC genes are strong indications that LCs are crucial in shaping the specificity of leukemic BCRs, in association with defined heavy chains. Therefore, CLL is characterized not only by stereotyped HCDR3 and heavy chains but, rather, by stereotyped BCRs involving both chains, which generate distinctive antigen-binding grooves.
  •  
2.
  • Nikolaou, Nikolaos, et al. (författare)
  • AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease.
  • 2019
  • Ingår i: Metabolism: clinical and experimental. - : Elsevier BV. - 1532-8600. ; 99, s. 67-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. Steroid hormones and bile acids are potent regulators of hepatic carbohydrate and lipid metabolism. Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates steroid hormones and catalyzes a fundamental step in bile acid synthesis.Human liver biopsies were obtained from 34 obese patients and AKR1D1 mRNA expression levels were measured using qPCR. Genetic manipulation of AKR1D1 was performed in human HepG2 and Huh7 liver cell lines. Metabolic assessments were made using transcriptome analysis, western blotting, mass spectrometry, clinical biochemistry, and enzyme immunoassays.In human liver biopsies, AKR1D1 expression decreased with advancing steatosis, fibrosis and inflammation. Expression was decreased in patients with type 2 diabetes. In human liver cell lines, AKR1D1 knockdown decreased primary bile acid biosynthesis and steroid hormone clearance. RNA-sequencing identified disruption of key metabolic pathways, including insulin action and fatty acid metabolism. AKR1D1 knockdown increased hepatocyte triglyceride accumulation, insulin sensitivity, and glycogen synthesis, through increased de novo lipogenesis and decreased β-oxidation, fueling hepatocyte inflammation. Pharmacological manipulation of bile acid receptor activation prevented the induction of lipogenic and carbohydrate genes, suggesting that the observed metabolic phenotype is driven through bile acid rather than steroid hormone availability.Genetic manipulation of AKR1D1 regulates the metabolic phenotype of human hepatoma cell lines, driving steatosis and inflammation. Taken together, the observation that AKR1D1 mRNA is down-regulated with advancing NAFLD suggests that it may have a crucial role in the pathogenesis and progression of the disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy