SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asimus S) "

Sökning: WFRF:(Asimus S)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asimus, Sara, 1976, et al. (författare)
  • Artemisinin antimalarials moderately affect cytochrome P450 enzyme activity in healthy subjects.
  • 2007
  • Ingår i: Fundamental & Clinical Pharmacology. - : Wiley. - 0767-3981 .- 1472-8206. ; 21:3, s. 307-316
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate which principal human cytochrome P450 (CYP450) enzymes are affected by artemisinin and to what degree the artemisinin derivatives differ with respect to their respective induction and inhibition capacity. Seventy-five healthy adults were randomized to receive therapeutic oral doses of artemisinin, dihydroartemisinin, arteether, artemether or artesunate for 5 days (days 1–5). A six-drug cocktail consisting of caffeine, coumarin, mephenytoin, metoprolol, chlorzoxazone and midazolam was administered orally on days −6, 1, 5 and 10 to assess the activities of CYP1A2, CYP2A6, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Four-hour plasma concentrations of parent drugs and corresponding metabolites and 7-hydroxycoumarin urine concentrations were quantified by liquid chromatography-tandem mass spectrometry. The 1-hydroxymidazolam/midazolam 4-h plasma concentration ratio (CYP3A) was increased on day 5 by artemisinin [2.66-fold (98.75% CI: 2.10–3.36)], artemether [1.54 (1.14–2.09)] and dihydroartemisinin [1.25 (1.06–1.47)] compared with day −6. The S-4'-hydroxymephenytoin/S-mephenytoin ratio (CYP2C19) was increased on day 5 by artemisinin [1.69 (1.47–1.94)] and arteether [1.33 (1.15–1.55)] compared with day −6. The paraxanthine/caffeine ratio (CYP1A2) was decreased on day 1 after administration of artemisinin [0.27 (0.18–0.39)], arteether [0.70 (0.55–0.89)] and dihydroartemisinin [0.73 (0.59–0.90)] compared with day −6. The α-hydroxymetoprolol/metoprolol ratio (CYP2D6) was lower on day 1 compared with day −6 in the artemisinin [0.82 (0.70–0.96)] and dihydroartemisinin [0.83 (0.71–0.96)] groups, respectively. In the artemisinin-treated subjects this decrease was followed by a 1.34-fold (1.14–1.58) increase from day 1 to day 5. These results show that intake of artemisinin antimalarials affect the activities of several principal human drug metabolizing CYP450 enzymes. Even though not significant in all treatment groups, changes in the individual metrics were of the same direction for all the artemisinin drugs, suggesting a class effect that needs to be considered in the development of new artemisinin derivatives and combination treatments of malaria.
  •  
2.
  •  
3.
  • Elsherbiny, Doaa A, et al. (författare)
  • A model based assessment of the CYP2B6 and CYP2C19 inductive properties by artemisinin antimalarials: implications for combination regimens.
  • 2008
  • Ingår i: Journal of pharmacokinetics and pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 35:2, s. 203-17
  • Tidskriftsartikel (refereegranskat)abstract
    • The study aim was to assess the inductive properties of artemisinin antimalarials using mephenytoin as a probe for CYP2B6 and CYP2C19 enzymatic activity. The population pharmacokinetics of S-mephenytoin and its metabolites S-nirvanol and S-4'-hydroxymephenytoin, including enzyme turn-over models for induction, were described by nonlinear mixed effects modeling. Rich data (8-16 samples/occasion/subject) were collected from 14 healthy volunteers who received mephenytoin before and during ten days of artemisinin administration. Sparse data (3 samples/occasion/subject) were collected from 74 healthy volunteers who received mephenytoin before, during and after five days administration of artemisinin, dihydroartemisinin, arteether, artemether or artesunate. The production rate of CYP2B6 was increased 79.7% by artemisinin, 61.5% by arteether, 76.1% by artemether, 19.9% by dihydroartemisinin and 16.9% by artesunate. The production rate of CYP2C19 increased 51.2% by artemisinin, 14.8% by arteether and 24.9% by artemether. In conclusion, all studied artemisinin derivatives induced CYP2B6. CYP2C19 induction by arteether and artemether as well as CYP2B6 and CYP2C19 induction by artemisinin was confirmed. The inductive capacity is different among the artemisinin drugs, which is of importance when selecting drugs to be used in antimalarial combination therapy such that the potential for drug-drug interactions is minimized.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy