SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Astrup E.) "

Sökning: WFRF:(Astrup E.)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
3.
  •  
4.
  • Albrechtsen, A., et al. (författare)
  • Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes
  • 2013
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 56:2, s. 298-310
  • Tidskriftsartikel (refereegranskat)abstract
    • Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) > 1% with common metabolic phenotypes. The study comprised three stages. We performed medium-depth (8x) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI > 27.5 kg/m(2) and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case-control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Exome sequencing identified 70,182 polymorphisms with MAF > 1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 x 10(-14)), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 x 10(-11)) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 x 10(-10)). We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.
  •  
5.
  • Massier, Lucas, et al. (författare)
  • An integrated single cell and spatial transcriptomic map of human white adipose tissue
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-cell studies of human white adipose tissue (WAT) provide insights into the specialized cell types in the tissue. Here the authors combine publicly available and newly generated high-resolution and bulk transcriptomic results from multiple human datasets to provide a comprehensive cellular map of white adipose tissue. To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
  •  
6.
  •  
7.
  • Otterdal, K, et al. (författare)
  • Rickettsia conorii is a potent complement activator in vivo and combined inhibition of complement and CD14 is required for attenuation of the cytokine response ex vivo.
  • 2016
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier BV. - 1198-743X .- 1469-0691. ; 22:8, s. 734.e1-734.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Mediterranean spotted fever caused by Rickettsia conorii is a potentially lethal disease characterized by vascular inflammation affecting multiple organs. Studies of R. conorii so far have focused on activation of inflammatory cells and their release of inflammatory cytokines, but complement activation has not been investigated in R. conorii-infected patients. Here, we performed a comprehensive analysis of complement activation markers and the soluble cross-talking co-receptor CD14 (sCD14) in plasma from R. conorii-infected patients. The clinical data were supplemented with ex vivo experiments where the cytokine response was characterized in human whole blood stimulated with R. conorii. Complement activation markers at the level of C3 (C3bc, C3bBbP) and terminal pathway activation (sC5b-9), as well as sCD14, were markedly elevated (p <0.01 for all), and closely correlated (p <0.05 for all), in patients at admission compared with healthy matched controls. All tested markers were significantly reduced to baseline values at time of follow up. Rickettsia conorii incubated in human whole blood was shown to trigger complement activation accompanied by release of the inflammatory cytokines interleukin-1β (IL-1β), IL-6, IL-8 and tumour necrosis factor. Whereas inhibition of either C3 or CD14 had only a minor effect on released cytokines, combined inhibition of C3 and CD14 resulted in significant reduction, virtually to baseline levels, of the four cytokines (p <0.05 for all). Our data show that complement is markedly activated upon R. conorii infection and complement activation is, together with CD14, responsible for a major part of the cytokine response induced by R. conorii in human whole blood.
  •  
8.
  • Rogozińska, Ewelina, et al. (författare)
  • Effects of antenatal diet and physical activity on maternal and fetal outcomes : Individual patient data meta-analysis and health economic evaluation
  • 2017
  • Ingår i: Health Technology Assessment. - : National Institute for Health Research. - 1366-5278 .- 2046-4924. ; 21:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Diet- and physical activity-based interventions in pregnancy have the potential to alter maternal and child outcomes. Objectives: To assess whether or not the effects of diet and lifestyle interventions vary in subgroups of women, based on maternal body mass index (BMI), age, parity, Caucasian ethnicity and underlying medical condition(s), by undertaking an individual patient data (IPD) meta-analysis. We also evaluated the association of gestational weight gain (GWG) with adverse pregnancy outcomes and assessed the cost-effectiveness of the interventions. Data sources: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Database of Abstracts of Reviews of Effects and Health Technology Assessment database were searched from October 2013 to March 2015 (to update a previous search). Review methods: Researchers from the International Weight Management in Pregnancy Collaborative Network shared the primary data. For each intervention type and outcome, we performed a two-step IPD random-effects meta-analysis, for all women (except underweight) combined and for each subgroup of interest, to obtain summary estimates of effects and 95% confidence intervals (CIs), and synthesised the differences in effects between subgroups. In the first stage, we fitted a linear regression adjusted for baseline (for continuous outcomes) or a logistic regression model (for binary outcomes) in each study separately; estimates were combined across studies using random-effects meta-analysis models. We quantified the relationship between weight gain and complications, and undertook a decision-analytic model-based economic evaluation to assess the cost-effectiveness of the interventions. Results: Diet and lifestyle interventions reduced GWG by an average of 0.70 kg (95% CI-0.92 to-0.48 kg; 33 studies, 9320 women). The effects on composite maternal outcome [summary odds ratio (OR) 0.90, 95% CI 0.79 to 1.03; 24 studies, 8852 women] and composite fetal/neonatal outcome (summary OR 0.94, 95% CI 0.83 to 1.08; 18 studies, 7981 women) were not significant. The effect did not vary with baseline BMI, age, ethnicity, parity or underlying medical conditions for GWG, and composite maternal and fetal outcomes. Lifestyle interventions reduce Caesarean sections (OR 0.91, 95% CI 0.83 to 0.99), but not other individual maternal outcomes such as gestational diabetes mellitus (OR 0.89, 95% CI 0.72 to 1.10), pre-eclampsia or pregnancy-induced hypertension (OR 0.95, 95% CI 0.78 to 1.16) and preterm birth (OR 0.94, 95% CI 0.78 to 1.13). There was no significant effect on fetal outcomes. The interventions were not cost-effective. GWG, including adherence to the Institute of Medicine-recommended targets, was not associated with a reduction in complications. Predictors of GWG were maternal age (summary estimate-0.10 kg, 95% CI-0.14 to-0.06 kg) and multiparity (summary estimate-0.73 kg, 95% CI-1.24 to-0.23 kg). Limitations: The findings were limited by the lack of standardisation in the components of intervention, residual heterogeneity in effects across studies for most analyses and the unavailability of IPD in some studies. Conclusion: Diet and lifestyle interventions in pregnancy are clinically effective in reducing GWG irrespective of risk factors, with no effects on composite maternal and fetal outcomes. Future work: The differential effects of lifestyle interventions on individual pregnancy outcomes need evaluation. Study registration: This study is registered as PROSPERO CRD42013003804.
  •  
9.
  •  
10.
  • Augustin, Livia S. A., et al. (författare)
  • Dietary Fibre Consensus from the International Carbohydrate Quality Consortium (ICQC)
  • 2020
  • Ingår i: Nutrients. - : MDPI. - 2072-6643. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary fibre is a generic term describing non-absorbed plant carbohydrates and small amounts of associated non-carbohydrate components. The main contributors of fibre to the diet are the cell walls of plant tissues, which are supramolecular polymer networks containing variable proportions of cellulose, hemicelluloses, pectic substances, and non-carbohydrate components, such as lignin. Other contributors of fibre are the intracellular storage oligosaccharides, such as fructans. A distinction needs to be made between intrinsic sources of dietary fibre and purified forms of fibre, given that the three-dimensional matrix of the plant cell wall confers benefits beyond fibre isolates. Movement through the digestive tract modifies the cell wall structure and may affect the interactions with the colonic microbes (e.g., small intestinally non-absorbed carbohydrates are broken down by bacteria to short-chain fatty acids, absorbed by colonocytes). These aspects, combined with the fibre associated components (e.g., micronutrients, polyphenols, phytosterols, and phytoestrogens), may contribute to the health outcomes seen with the consumption of dietary fibre. Therefore, where possible, processing should minimise the degradation of the plant cell wall structures to preserve some of its benefits. Food labelling should include dietary fibre values and distinguish between intrinsic and added fibre. Labelling may also help achieve the recommended intake of 14 g/1000 kcal/day.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy