SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Athauda Dilan) "

Sökning: WFRF:(Athauda Dilan)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dayal, Viswas, et al. (författare)
  • Short Versus Conventional Pulse-Width Deep Brain Stimulation in Parkinson's Disease : A Randomized Crossover Comparison
  • 2020
  • Ingår i: Movement Disorders. - : John Wiley & Sons. - 0885-3185 .- 1531-8257. ; 35:1, s. 101-108
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective therapy for selected Parkinson's disease patients with motor fluctuations, but can adversely affect speech and axial symptoms. The use of short pulse width (PW) has been shown to expand the therapeutic window acutely, but its utility in reducing side effects in chronic STN-DBS patients has not been evaluated. Objective To compare the effect of short PW settings using 30-mu s with conventional 60-mu s settings on stimulation-induced dysarthria in Parkinson's disease patients with previously implanted STN-DBS systems.Methods: In this single-center, double-blind, randomized crossover trial, we assigned 16 Parkinson's disease patients who had been on STN-DBS for a mean of 6.5 years and exhibited moderate dysarthria to 30-mu s or 60-mu s settings for 4 weeks followed by the alternative PW setting for a further 4 weeks. The primary outcome was difference in dysarthric speech measured by the Sentence Intelligibility Test between study baseline and the 2 PW conditions. Secondary outcomes included motor, nonmotor, and quality of life measures.Results: There was no difference in the Sentence Intelligibility Test scores between baseline and the 2 treatment conditions (P = 0.25). There were also no differences noted in motor, nonmotor, or quality of life scores. The 30-mu s settings were well tolerated, and adverse event rates were similar to those at conventional PW settings. Post hoc analysis indicated that patients with dysarthria and a shorter duration of DBS may be improved by short PW stimulation.Conclusions: Short PW settings using 30 mu s did not alter dysarthric speech in chronic STN-DBS patients. A future study should evaluate whether patients with shorter duration of DBS may be helped by short PW settings.
  •  
2.
  • Paterson, Ross W, et al. (författare)
  • Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes.
  • 2021
  • Ingår i: Brain communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n=34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n=94) and without (n=24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14800pg/ml (400, 32400)], compared to those with encephalopathy [1410pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740pg/ml (507, 881)] and controls [872pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.
  •  
3.
  •  
4.
  • Wirth, Thomas, et al. (författare)
  • Clinical outcomes after MRI connectivity-guided radiofrequency thalamotomy for tremor
  • 2024
  • Ingår i: Journal of Neurosurgery. - : American Association of Neurological Surgeons. - 0022-3085 .- 1933-0693. ; 140:4, s. 1148-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Radiofrequency thalamotomy (RF-T) is an established treatment for refractory tremor. It is unclear whether connectivity-guided targeting strategies could further augment outcomes. The aim of this study was to evaluate the efficacy and safety of MRI connectivity-guided RF-T in severe tremor.METHODS: Twenty-one consecutive patients with severe tremor (14 with essential tremor [ET], 7 with Parkinson's disease [PD]) underwent unilateral RF-T at a single institution between 2017 and 2020. Connectivity-derived thalamic segmentation was used to guide targeting. Changes in the Fahn-Tolosa-Marin Rating Scale (FTMRS) were recorded in treated and nontreated hands as well as procedure-related side effects.RESULTS: Twenty-three thalamotomies were performed (with 2 patients receiving a repeated intervention). The mean postoperative assessment time point was 14.1 months. Treated-hand tremor scores improved by 63.8%, whereas nontreated-hand scores deteriorated by 10.1% (p < 0.01). Total FTMRS scores were significantly better at follow-up compared with baseline (mean 34.7 vs 51.7, p = 0.016). Baseline treated-hand tremor severity (rho = 0.786, p < 0.01) and total FTMRS score (rho = 0.64, p < 0.01) best correlated with tremor improvement. The most reported side effect was mild gait ataxia (n = 11 patients).CONCLUSIONS: RF-T guided by connectivity-derived segmentation is a safe and effective option for severe tremor in both PD and ET.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy