SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Atzori Marco 1992 ) "

Sökning: WFRF:(Atzori Marco 1992 )

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Atzori, Marco, 1992-, et al. (författare)
  • A new perspective on skin-friction contributions in adverse-pressure-gradient turbulent boundary layers
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • For adverse-pressure-gradient turbulent boundary layers, the study of integral skin-friction contributions still poses significant challenges. Beyond questions related to the integration boundaries and the derivation procedure, which have been thoroughly investigated in the literature, an important issue is how different terms should be aggregated. The nature of these flows, which exhibit significant in-homogeneity in the streamwise direction, usually results in cancellation between several contributions with high absolute values. We propose a formulation of the identity derived by Fukagata, Iwamoto \& Kasagi (Phys. Fluids, vol. 14, 2002, pp. 73--76), which we obtained from the convective form of the governing equations. A new skin-friction contribution is defined, considering wall-tangential convection and pressure gradient together. This contribution is related to the evolution of the dynamic pressure in the mean flow. The results of the decomposition are examined for a broad range of pressure-gradient conditions and different flow-control strategies. We found that the new formulation of the identity allows to readily identify the different regimes of near-equilibrium conditions and approaching separation. It also provides a more effective description of control effects. A similar aggregation between convection and pressure-gradient terms is also possible for any other decomposition where in-homogeneity contributions are considered explicitly. 
  •  
2.
  • Atzori, Marco, 1992-, et al. (författare)
  • Aerodynamic Effects of Uniform Blowing and Suction on a NACA4412 Airfoil
  • 2020
  • Ingår i: Flow Turbulence and Combustion. - : Springer. - 1386-6184 .- 1573-1987.
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out high-fidelity large-eddy simulations to investigate the effects of uniform blowing and uniform suction on the aerodynamic efficiency of a NACA4412 airfoil at the moderate Reynolds number based on chord length and incoming velocity of Rec= 200 , 000. We found that uniform blowing applied at the suction side reduces the aerodynamics efficiency, while uniform suction increases it. This result is due to the combined impact of blowing and suction on skin friction, pressure drag and lift. When applied to the pressure side, uniform blowing improves aerodynamic efficiency. The Reynolds-number dependence of the relative contributions of pressure and friction to the total drag for the reference case is analysed via Reynolds-averaged Navier–Stokes simulations up to Rec= 10 , 000 , 000. The results suggest that our conclusions on the control effect can tentatively be extended to a broader range of Reynolds numbers. 
  •  
3.
  • Atzori, Marco, 1992-, et al. (författare)
  • Contribution of Reynolds-stress structures to the secondary flow in turbulent ducts
  • 2019
  • Ingår i: 11th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019. - : International Symposium on Turbulence and Shear Flow Phenomena, TSFP.
  • Konferensbidrag (refereegranskat)abstract
    • The present work is aimed at evaluating the contribution to the secondary flow in duct flow with square and rectangular cross section from three-dimensional coherent structures, defined as intense Reynolds-stress events. The contribution to a certain mean quantity is defined as the ensemble average over the detected coherent structures, weighted with their own occupied volume fraction. Our analysis unveils that the contribution to the cross-stream components of the mean velocity is either very similar to the same contribution in channel flow, or almost negligible in respect to the contribution from the portion of the domain not occupied by coherent structures. These results suggest that the most intense events are not directly responsible for the secondary flow.
  •  
4.
  • Atzori, Marco, 1992-, et al. (författare)
  • Effects of Different Friction Control Techniques on Turbulence Developing Around Wings
  • 2020
  • Ingår i: ERCOFTAC Workshop Direct and Large Eddy Simulation. - Cham : Springer. ; , s. 305-311
  • Bokkapitel (refereegranskat)abstract
    • Developing efficient flow control techniques remain a challenging task due to the complexity of turbulent flows in industrial applications, a relevant example of which are turbulent boundary layers (TBL) subjected to pressure gradients. In the present study, we employ high-fidelity numerical simulations to assess the impact of different control strategies on the flow around a NACA4412 airfoil at a Reynolds number Rec=200,000 based on the chord length c and the inflow velocity U∞. The choice of this specific study case is motivated by the relatively weak dependence of the pressure distribution around the airfoil on the Reynolds number [6], which allows distinguishing the effects of increasing Reynolds number and those of the non-uniform adverse pressure gradient (APG).
  •  
5.
  • Atzori, Marco, 1992-, et al. (författare)
  • In situ visualization of large-scale turbulence simulations in Nek5000 with ParaView Catalyst
  • 2022
  • Ingår i: Journal of Supercomputing. - : Springer. - 0920-8542 .- 1573-0484. ; 78:3, s. 3605-3620
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ visualization on high-performance computing systems allows us to analyze simulation results that would otherwise be impossible, given the size of the simulation data sets and offline post-processing execution time. We develop an in situ adaptor for Paraview Catalyst and Nek5000, a massively parallel Fortran and C code for computational fluid dynamics. We perform a strong scalability test up to 2048 cores on KTH’s Beskow Cray XC40 supercomputer and assess in situ visualization’s impact on the Nek5000 performance. In our study case, a high-fidelity simulation of turbulent flow, we observe that in situ operations significantly limit the strong scalability of the code, reducing the relative parallel efficiency to only ≈ 21 % on 2048 cores (the relative efficiency of Nek5000 without in situ operations is ≈ 99 %). Through profiling with Arm MAP, we identified a bottleneck in the image composition step (that uses the Radix-kr algorithm) where a majority of the time is spent on MPI communication. We also identified an imbalance of in situ processing time between rank 0 and all other ranks. In our case, better scaling and load-balancing in the parallel image composition would considerably improve the performance of Nek5000 with in situ capabilities. In general, the result of this study highlights the technical challenges posed by the integration of high-performance simulation codes and data-analysis libraries and their practical use in complex cases, even when efficient algorithms already exist for a certain application scenario.
  •  
6.
  • Atzori, Marco, 1992-, et al. (författare)
  • LES and RANS calculations of particle dispersion behind a wall-mounted cubic obstacle
  • 2022
  • Ingår i: International Journal of Multiphase Flow. - : Elsevier BV. - 0301-9322 .- 1879-3533. ; 151, s. 104037-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present paper, we evaluate the performances of three stochastic models for particle dispersion in the case of a three-dimensional turbulent flow. We consider the flow in a channel with a cubic wall-mounted obstacle, and perform large-eddy simulations (LESs) including passive particles injected behind the obstacle, for cases of low and strong inertial effects. We also perform Reynolds-averaged simulations of the same case, using standard turbulence models, and employ the two discrete stochastic models for particle dispersion implemented in the open-source code OpenFOAM and the continuous Lagrangian stochastic model proposed by Minier et al. (2004). The Lagrangian model is consistent with a Probability Density Function (PDF) model of the exact particle equations, and is based on the modelling of the fluid velocity seen by particles. This approach allows a consistent formulation which eliminates the spurious drifts flawing discrete models and to have the drag force in a closed form. The LES results are used as reference data both for the fluid RANS simulations and particle simulations with dispersion models. The present test case allows to evaluate the performance of dispersion models in highly non-homogeneous flow, and it used in this context for the first time. The continuous stochastic model generally shows a better agreement with the LES than the discrete stochastic models, in particular in the case of particles with higher inertia. 
  •  
7.
  • Atzori, Marco, 1992-, et al. (författare)
  • Uniform blowing and suction applied to nonuniform adverse-pressure-gradient wing boundary layers
  • 2021
  • Ingår i: Physical Review Fluids. - : American Physical Society (APS). - 2469-990X. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed analysis of the effects of uniform blowing, uniform suction, and body-force damping on the turbulent boundary layer developing around a NACA4412 airfoil at moderate Reynolds number is presented. The flow over the suction and the pressure sides of the airfoil is subjected to a nonuniform adverse pressure gradient and a moderate favorable pressure gradient, respectively. We find that the changes in total skin friction due to blowing and suction are not very sensitive to different pressure-gradient conditions or the Reynolds number. However, when blowing and suction are applied to an adverse-pressure-gradient (APG) boundary layer, their impact on properties such as the boundary-layer thickness, the intensity of the wall-normal convection, and turbulent fluctuations are more pronounced. We employ the Fukagata-Iwamoto-Kasagi decomposition [K. Fukagata et al., Phys. Fluids 14, 73 (2002)] and spectral analysis to study the interaction between intense adverse pressure gradient and these control strategies. We find that the control modifies skin-friction contributions differently in adverse-pressure-gradient and zero-pressure-gradient boundary layers. In particular, the control strategies modify considerably both the streamwisedevelopment and the pressure-gradient contributions, which have high magnitude when a strong adverse pressure gradient is present. Blowing and suction also impact the convection of structures in the wall-normal direction. Overall, our results suggest that it is not possible to simply separate pressure-gradient and control effects, a fact to take into account in future studies on control design in practical applications.
  •  
8.
  • Fahland, Georg, et al. (författare)
  • Investigation of Blowing and Suction for Turbulent Flow Control on Airfoils
  • 2021
  • Ingår i: AIAA Journal. - : American Institute of Aeronautics and Astronautics (AIAA). - 0001-1452 .- 1533-385X. ; 59:11, s. 4422-4436
  • Tidskriftsartikel (refereegranskat)abstract
    • An extensive parametric study of turbulent boundary-layer control on airfoils via uniform blowing or suction is presented. The control is applied on either the suction or pressure side of several four-digit NACA-series airfoils. The considered parameter variations include angle of attack, Reynolds number, control intensity, airfoil camber, and airfoil thickness. Two comprehensive metrics, designed to account for the additional energy required by the control, are introduced to evaluate the net aerodynamic performance enhancements. The study confirms previous findings for suction-side boundary-layer control and demonstrates the interesting potential of blowing on the pressure side under various conditions, which achieves a maximum total net drag saving of 14% within the considered parameter space. The broad parameter space covered by the presented Reynolds-average Navier-Stokes simulations allows for more general conclusions than previous studies and can thus provide guidelines for the design of future detailed experimental or numerical studies on similar boundary-layer control schemes.
  •  
9.
  • Fan, Yitong, et al. (författare)
  • Decomposition of the mean friction drag in adverse-pressure-gradient turbulent boundary layers
  • 2020
  • Ingår i: Physical Review Fluids. - : American Physical Society (APS). - 2469-990X. ; 5:11
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we exploit the Renard-Deck identity [J. Fluid Mech. 790, 339 (2016)] to decompose the mean friction drag in adverse-pressure-gradient turbulent boundary layers (APG-TBLs) into three components, associated with viscous dissipation, turbulence kinetic energy production, and spatial growth of the flow, respectively. We consider adverse-pressure-gradient turbulent boundary layers developing on flat plates and airfoils, with friction Reynolds numbers in the range 200 < Re-tau < 2000, and with Rotta-Clauser pressure-gradient parameters (beta) ranging from 0 to 50. The effects of Reynolds number, adverse pressure gradient, and the pressure-gradient history on the contributing components are individually investigated, and special attention is paid to the comparisons with zero-pressure-gradient turbulent boundary layers (ZPG-TBLs). Our results indicate that the inner peaks of the dissipation and production terms are located at y(+) approximate to 6 and y(+) approximate to 16.5, respectively, and their outer peaks scale with the 99% boundary-layer thickness (delta(99)), i.e., y/delta(99) approximate to 0.7 and 0.53, respectively. These results are independent of the friction Reynolds number, the magnitude of beta, and its development history. Moreover, the spatial-growth component is negative in the investigated APG-TBLs, and its magnitude increases with beta.
  •  
10.
  • Fan, Yitong, et al. (författare)
  • Decomposition of the mean friction drag on an NACA4412 airfoil under uniform blowing/suction
  • 2021
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 932
  • Tidskriftsartikel (refereegranskat)abstract
    • The application of drag-control strategies on canonical wall-bounded turbulence, such as periodic channel and zero- or adverse-pressure-gradient boundary layers, raises the question on how to distinguish consistently the origin of control effects under different reference conditions. We employ the RD identity (Renard & Deck, J. Fluid Mech., vol. 790, 2016, pp. 339-367) to decompose the mean friction drag and investigate the control effects of uniform blowing and suction applied to an NACA4412 airfoil at chord Reynolds numbers Re-c = 200 000 and 400 000. The connection of the drag reduction/increase by using blowing/suction with the turbulence statistics (including viscous dissipation, turbulence kinetic energy production and spatial growth of the flow) across the boundary layer, subjected to adverse or favourable pressure gradients, is examined. We found that the inner and outer peaks of the contributions associated with the friction-drag generation show good scaling with either inner or outer units, respectively. They are also independent of the Reynolds number, control scheme and intensity of the blowing/suction. The small- and large-scale structures are separated with an adaptive scale-decomposition method, namely the empirical mode decomposition (EMD), which aims to analyse the scale-specific contribution of turbulent motions to friction-drag generation. Results unveil that blowing on the suction side of the airfoil is able to enhance the contribution of large-scale motions and to suppress that of small scales; however, suction behaves contrarily. The contributions related to cross-scale interactions remain almost unchanged with different control strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy