SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Audet Joachim) "

Sökning: WFRF:(Audet Joachim)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attermeyer, Katrin, et al. (författare)
  • Carbon dioxide fluxes increase from day to night across European streams
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Nature. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1mmolm(-2) h(-1) at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams. Diel patterns can greatly impact total stream carbon dioxide emissions, with 39% greater carbon dioxide flux during the night-time relative to the day-time, according to a study of 34 streams across Europe.
  •  
2.
  • Audet, Joachim (författare)
  • Comparison of sampling methodologies for nutrient monitoring in streams: uncertainties, costs and implications for mitigation
  • 2014
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 18, s. 4721-4731
  • Tidskriftsartikel (refereegranskat)abstract
    • Eutrophication of aquatic ecosystems caused by excess concentrations of nitrogen and phosphorus may have harmful consequences for biodiversity and poses a health risk to humans via water supplies. Reduction of nitrogen and phosphorus losses to aquatic ecosystems involves implementation of costly measures, and reliable monitoring methods are therefore essential to select appropriate mitigation strategies and to evaluate their effects. Here, we compare the performances and costs of three methodologies for the monitoring of nutrients in rivers: grab sampling; time-proportional sampling; and passive sampling using flow-proportional samplers. Assuming hourly time-proportional sampling to be the best estimate of the "true" nutrient load, our results showed that the risk of obtaining wrong total nutrient load estimates by passive samplers is high despite similar costs as the time-proportional sampling. Our conclusion is that for passive samplers to provide a reliable monitoring alternative, further development is needed. Grab sampling was the cheapest of the three methods and was more precise and accurate than passive sampling. We conclude that although monitoring employing time-proportional sampling is costly, its reliability precludes unnecessarily high implementation expenses.
  •  
3.
  • Audet, Joachim (författare)
  • Environmental controls of plant species richness in riparian wetlands: Implications for restoration
  • 2015
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 16, s. 480-489
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetland restoration projects often focus on mitigating losses of nutrients (nitrogen and phosphorus) toward downstream aquatic recipients and, so far, there is no clear guidance on how to restore environmental conditions to improve biodiversity values in the restored areas. However, to provide such guidance, it is necessary to obtain a better understanding of the factors driving biodiversity in natural wetlands. For this purpose, we investigated plant community characteristics in 35 plots located at 10 Danish riparian wetlands to identify critical factors required to sustain species diversity. We hypothesized that species richness is influenced by groundwater characteristics and nutrient availability and that threshold values for these environmental variables can be defined to characterize conditions needed to sustain high diversity plant communities, We found that high groundwater level (less than 37 cm depth) and low soil phosphorus content (<347 mu g cm(-3)) were two important drivers of plant species richness. Furthermore, at high groundwater and low soil phosphorus content, low nitrogen concentration in the groundwater also favors greater species richness. Our results imply that establishment of a groundwater table close to the soil surface and low nutrient availability are important factors for improving species richness in restored areas.
  •  
4.
  • Audet, Joachim (författare)
  • Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21, s. 4449-4463
  • Tidskriftsartikel (refereegranskat)abstract
    • Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale, response to climate change may not follow predictions based on the temperature dependence of metabolic processes.
  •  
5.
  • Audet, Joachim, et al. (författare)
  • Forest streams are important sources for nitrous oxide emissions - Nitrous oxide emissions from Swedish streams
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26, s. 629-641
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 +/- 2.1 and 1.3 +/- 1.8 mu g N/L, respectively (mean +/- SD) despite higher total N (TN) concentrations in agricultural streams (1,520 +/- 1,640 vs. 780 +/- 600 mu g N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low-order streams at the national scale revealed that ~1.8 x 10(9) g N2O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 x 10(9) g CO2-eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector.
  •  
6.
  • Audet, Joachim (författare)
  • Heat-wave effects on greenhouse gas emissions from shallow lake mesocosms
  • 2017
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 62, s. 1130-1142
  • Tidskriftsartikel (refereegranskat)abstract
    • Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain. Using the world's longest-running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11years prior to the artificial HW. In general, there was an increase in total GHG emissions during the 1-month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4. In contrast to the observable heat-wave effect, no clear general effect of the long-term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes.
  •  
7.
  • Audet, Joachim (författare)
  • Nitrogen and Phosphorus Removal from Agricultural Runoff in Integrated Buffer Zones
  • 2018
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 52, s. 6508-6517
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrated buffer zones (IBZs) represent a novel form of edge-of-field technology in Northwest Europe. Contrary to the common riparian buffer strips, IBZs collect tile drainage water from agricultural fields by combining a ditch-like pond (POND), where soil particles can settle, and a flow-through filter bed (FILTERBED) planted with Alnus glutinosa (L.), a European alder (black alder). The first experimental IBZ facility was constructed and thoroughly tested in Denmark for its capability to retain various nitrogen (N) and phosphorus (P) species within the first three years after construction. We calculated the water and nutrient budget for the total IBZ and for the two compartments, POND and FILTERBED, separately. Furthermore, a tracer experiment using sodium bromide was conducted in order to trace the water flow and estimate the hydraulic residence time in the FILTERBEDs. The monthly average removal efficiency amounted to 10-67% for total N and 31-69% for total P, with performance being highest during the warm season. Accordingly, we suggest that IBZs may be a valuable modification of dry buffer strips in order to mitigate the adverse impacts of high nutrient loading from agricultural fields on the aquatic environment.
  •  
8.
  • Audet, Joachim, et al. (författare)
  • Nitrous oxide emissions from streams in a Swedish agricultural catchment
  • 2017
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 236, s. 295-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Excess nitrogen fertiliser in agricultural soils might be leached to streams and converted to the greenhouse gas nitrous oxide (N2O). To assess the importance of N2O emissions from agricultural streams, concentration dynamics and emissions N2O emissions in streams were investigated in a 32 km2 lowland agricultural catchment located in Sweden. Dissolved N2O concentration was measured at nine occasions between December 2014 and August 2015 at nine stream stations. The stream stations represented sub-catchments with different land use characteristics with agricultural land use ranging from 0 to 63% of the area. Stream N2O percentage saturation ranged 40-2701% and showed large spatial and temporal variations. Statistical analysis using mixed models revealed that N2O concentration was significantly linked to nitrate concentration in the stream water, to the percentage arable land in the sub catchments as well as to the stream water discharge. Using two empirical equations to estimate the N2O emissions showed that streams were generally a source of N2O to the atmosphere (mean 108 and 175 mu g N m(-2) h(-1) with first and second equation). The catchment scale estimate of N2O stream emissions was compared to the estimate obtained using IPCC guidelines linking N fertilisation inputs and leaching to N2O emissions. The comparison suggested that N2O stream emission calculated using the IPCC methodology might be underestimated. A coarse estimate suggests that N2O stream emissions represent about 4% of the total N2O emissions from N-fertiliser at the catchment scale. Hence while streams covered only 0.1% of the catchment area they were of disproportionate importance as a source of N2O to the atmosphere.
  •  
9.
  • Audet, Joachim (författare)
  • Synergy between nutrients and warming enhances methane ebullition from experimental lakes
  • 2018
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8, s. 156-160
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes and ponds are important natural sources of the potent greenhouse gas methane (CH4), with small shallow waters identified as particular hotspots(1,2). Ebullition (bubbles) of CH4 makes up a large proportion of total CH4 flux(3,4). However, difficulty measuring such episodic events(5) makes prediction of how ebullition responds to nutrient enrichment and rising temperatures challenging. Here, the world's longest running, mesocosm-based, shallow lake climate change experiment was used to investigate how the combination of warming and eutrophication (that is, nutrient enrichment) affects CH4 ebullition. Eutrophication without heating increased the relative contribution of ebullition from 51% to 75%. More strikingly the combination of nutrient enrichment and experimental warming treatments of +2-3 degrees C and +4-5 degrees C had a synergistic effect, increasing mean annual ebullition by at least 1900 mg CH4-C m(-2) yr(-1). In contrast, diffusive flux showed no response to eutrophication and only a small increase at higher temperatures (average 63 mg CH4-C m(-2) yr(-1)). As shallow lakes are the most common lake type globally, abundant in highly climate sensitive regions(6) and most vulnerable to eutrophication, these results suggest their current and future contributions to atmospheric CH4 concentrations may be significantly underestimated.
  •  
10.
  • Bravo, Andrea G., et al. (författare)
  • The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems : A latitudinal study across Europe
  • 2018
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 144, s. 172-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64°N. THg concentrations (0.06–2.78 ng L−1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8–159 pg L−1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (15)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Audet, Joachim (17)
Mendoza-Lera, Clara (3)
Catalán, Núria (3)
Liu, Liu (3)
Attermeyer, Katrin (3)
Pastor, Ada (3)
visa fler...
Cauvy-Fraunie, Sophi ... (3)
Portela, Ana Paula (3)
Niedrist, Georg H. (3)
Deininger, Anne (3)
Pilotto, Francesca (3)
Mor, Jordi-Rene (3)
Monteiro, Juliana (3)
Colls, Miriam (3)
Nagler, Magdalena (3)
Bishop, Kevin (2)
Laudon, Hjalmar (2)
Löfgren, Stefan (2)
Casas-Ruiz, Joan Per ... (2)
Fuss, Thomas (2)
Nydahl, Anna (2)
Roberts, Catherine G ... (2)
De Eyto, Elvira (1)
Campeau, Audrey (1)
Wallin, Marcus, 1979 ... (1)
Buffam, Ishi (1)
Kothawala, Dolly (1)
Weyhenmeyer, Gesa A. (1)
Bastviken, David (1)
Bundschuh, Mirco (1)
Sobek, Sebastian (1)
Andersson, Stefan (1)
Teutschbein, Claudia ... (1)
Grabs, Thomas J., 19 ... (1)
Sahlée, Erik (1)
Sundblad-Tonderski, ... (1)
Kyllmar, Katarina (1)
Mckie, Brendan (1)
Sheath, Danny (1)
Doretto, Alberto (1)
Doyle, Brian C. (1)
Simov, Nikolay (1)
Timoner, Xisca (1)
Evtimova, Vesela (1)
Barral-Fraga, Laura (1)
Basic, Tea (1)
Busst, Georgina (1)
Fenoglio, Stefano (1)
Fletcher, David (1)
Noss, Christian (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (13)
Uppsala universitet (7)
Umeå universitet (3)
Linköpings universitet (2)
Stockholms universitet (1)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy