SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Audusseau Helene) "

Sökning: WFRF:(Audusseau Helene)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Audusseau, Hélène, et al. (författare)
  • Ecology and Genetic Structure of the Parasitoid Phobocampe confusa (Hymenoptera: Ichneumonidae) in Relation to Its Hosts, Aglais Species (Lepidoptera: Nymphalidae)
  • 2020
  • Ingår i: Insects. - : MDPI AG. - 2075-4450. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The biology of parasitoids in natural ecosystems remains very poorly studied, though they are key species for their functioning. Here we focused on Phobocampe confusa, a Nymphalini specialist, responsible for high mortality rates in charismatic butterfly species in Europe (genus Aglais). We studied its ecology and genetic structure in connection with those of its host butterflies in Sweden. To this aim, we gathered data from 428 P. confusa individuals reared from 6094 butterfly larvae (of A. urticae, A. io, and in two occasions of Araschnia levana) collected over two years (2017 and 2018) and across 19 sites distributed along a 500 km latitudinal gradient. We found that P. confusa is widely distributed along the latitudinal gradient. Its distribution seems constrained over time by the phenology of its hosts. The large variation in climatic conditions between sampling years explains the decrease in phenological overlap between P. confusa and its hosts in 2018 and the 33.5% decrease in the number of butterfly larvae infected. At least in this study, P. confusa seems to favour A. urticae as host. While it parasitized nests of A. urticae and A. io equally, the proportion of larvae parasitized is significantly higher for A. urticae. At the landscape scale, P. confusa is almost exclusively found in vegetated open land and near deciduous forests, whereas artificial habitats are negatively correlated with the likelihood of a nest to be parasitized. The genetic analyses on 89 adult P. confusa and 87 adult A. urticae using CO1 and AFLP markers reveal a low genetic diversity in P. confusa and a lack of genetic structure in both species, at the scale of our sampling. Further genetic studies using high-resolution genomics tools will be required to better understand the population genetic structure of P. confusa, its biotic interactions with its hosts, and ultimately the stability and the functioning of natural ecosystems.
  •  
2.
  • Audusseau, Hélène, 1986- (författare)
  • Effect of climate and land use on niche utilization and distribution of nettle-feeding  butterflies
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Anthropogenic changes in climate and land use are causing a dramatic erosion of biodiversity. To understand this erosion, and predict future transformations of biodiversity, we need to understand better species’ response to these changes at different spatial and temporal scales. Modeling studies have identified correlations between physical parameters of the environment and species’ distribution at large spatial scales. However, this does not accurately characterize the response of a specific species, since this does not account for the constraints arising from the biology of the species. This thesis shall combine knowledge on the biology of species obtained from laboratory experiments with modeling studies. This will allow us (i) to identify life history traits and biotic interactions that influence species’ adaptive potential, and hence, explain possible differences in species’ distribution, and (ii) to consider, not only the ecological but also the evolutionary aspects of species’ response to changes. This integrative approach is likely to improve our predictions on species’ population dynamic in a changing environment.I focus on a community of butterflies in Sweden (Vanessa cardui, Polygonia c-album, Aglais urticae, Aglais io, Araschnia levana) that feeds on the stinging nettle (Urtica dioica). The available knowledge on the biology of these species and their short life cycles, which allow investigations of their response to changes on a short-time scale, make them a good system to study. Among three of these species, I showed great differences in organisms’ response to variation in food nutrient content. This is a potentially important finding considering the increased use of chemical fertilizers. These differences are to a large extent explained by differences among species in their degree of host plant specialization and voltinism (paper II). Thus, life history traits determine the response of species to environmental changes, but are themselves likely to evolve in response to such changes. Climate change, for instance, may alter the phenological synchrony between plant-feeding insects and their host plants, making it necessary for the insects to evolve their host plant range in order to ensure the availability of resources during larval development (paper I & III). The biology of a species, including biotic interactions, helps to explain the observed shift in a species’ distribution and environmental niche that result from climate change. I have shown that the recent establishment of A. levana in southern Sweden has modified the niche of the resident species, A. urticae and A. io (Paper IV). Niche partitioning in this community is likely mediated by parasite-driven apparent competition.
  •  
3.
  • Audusseau, Hélène, et al. (författare)
  • Impacts of metallic trace elements on an earthworm community in an urban wasteland : Emphasis on the bioaccumulation and genetic characteristics in Lumbricus castaneus
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 718
  • Tidskriftsartikel (refereegranskat)abstract
    • Metallic trace elements (MTEs) soil pollution has become a worldwide concern, particularly regarding its impact on earthworms. Earthworms, which constitute the dominant taxon of soil macrofauna in temperate regions and are crucial ecosystem engineers, are in direct contact with MTEs. The impacts of MTE exposure on earthworms, however, vary by species, with some able to cope with high levels of contamination. We combined different approaches to study the effects of MTEs at different levels of biological organisation of an earthworm community, in a contaminated urban wasteland. Our work is based on field collection of soil and earthworm samples, with a total of 891 adult earthworms from 8 species collected, over 87 quadrats across the study plot. We found that MTE concentrations are highly structured at the plot scale and that some elements, such as Pb, Zn, and Cu, are highly correlated. Comparing species assemblage to MTE concentrations, we found that the juvenile and adult abundances, and community composition, were significantly affected by pollution. Along the pollution gradient, as species richness decreased, Lumbricus castaneus became more dominant. We thus investigated the physiological response of this species to a set of specific elements (Pb, Zn, Cu, and Cd) and studied the impacts of MTE concentrations at the plot scale on its population genetic. These analyses revealed that L. castaneus is able to bioaccumulate high quantities of Cd and Zn, but not of Cu and Pb. The population genetic analysis, based on the genotyping of 175 individuals using 8 microsatellite markers, provided no evidence of the role of the heterogeneity in MTE concentrations as a barrier to gene flow. The multidisciplinary approach we used enabled us to reveal the comparatively high tolerance of L. castaneus to MTE concentrations, suggesting that this is a promising model to study the molecular bases of MTE tolerance.
  •  
4.
  • Audusseau, Helene, et al. (författare)
  • Implications of a temperature increase for host plant range : predictions for a butterfly
  • 2013
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 3:9, s. 3021-3029
  • Tidskriftsartikel (refereegranskat)abstract
    • Although changes in phenology and species associations are relatively well-documented responses to global warming, the potential interactions between these phenomena are less well understood. In this study, we investigate the interactions between temperature, phenology (in terms of seasonal timing of larval growth) and host plant use in the polyphagous butterfly Polygonia c-album. We found that the hierarchy of larval performance on three natural host plants was not modified by a temperature increase as such. However, larval performance on each host plant and temperature treatment was affected by rearing season. Even though larvae performed better at the higher temperature regardless of the time of the rearing, relative differences between host plants changed with the season. For larvae reared late in the season, performance was always better on the herbaceous plant than on the woody plants. In this species, it is likely that a prolonged warming will lead to a shift from univoltinism to bivoltinism. The demonstrated interaction between host plant suitability and season means that such a shift is likely to lead to a shift in selective regime, favoring specialization on the herbaceous host. Based on our result, we suggest that host range evolution in response to temperature increase would in this species be highly contingent on whether the population undergoes a predicted shift from one to two generations. We discuss the effect of global warming on species associations and the outcome of asynchrony in rates of phenological change.
  •  
5.
  • Audusseau, Hélène, et al. (författare)
  • Plant Fertilization Interacts with Life History : Variation in Stoichiometry and Performance in Nettle-Feeding Butterflies
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Variation in food stoichiometry affects individual performance and population dynamics, but it is also likely that species with different life histories should differ in their sensitivity to food stoichiometry. To address this question, we investigated the ability of the three nettle-feeding butterflies (Aglais urticae, Polygonia c-album, and Aglais io) to respond adaptively to induced variation in plant stoichiometry in terms of larval performance. We hypothesized that variation in larval performance between plant fertilization treatments should be functionally linked to species differences in host plant specificity. We found species-specific differences in larval performance between plant fertilization treatments that could not be explained by nutrient limitation. We showed a clear evidence of a positive correlation between food stoichiometry and development time to pupal stage and pupal mass in Aglais urticae. The other two species showed a more complex response. Our results partly supported our prediction that host plant specificity affects larval sensitivity to food stoichiometry. However, we suggest that most of the differences observed may instead be explained by differences in voltinism (number of generations per year). We believe that the potential of some species to respond adaptively to variation in plant nutrient content needs further attention in the face of increased eutrophication due to nutrient leakage from human activities.
  •  
6.
  • Audusseau, Hélène, et al. (författare)
  • Rewiring of interactions in a changing environment : nettle-feeding butterflies and their parasitoids
  • 2021
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 130:4, s. 624-636
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate and land use change can alter the incidence and strength of biotic interactions, with important effects on the distribution, abundance and function of species. To assess the importance of these effects and their dynamics, studies quantifying how biotic interactions change in space and time are needed. We studied interactions between nettle-feeding butterflies and their shared natural enemies (parasitoids) locally and across 500 km latitudinal gradient in Sweden. We also examined the potential impact of the range-expansion of the butterfly Araschnia levana on resident butterflies via shared parasitoids, by studying how parasitism in resident butterflies covaries with the presence or absence of the newly-established species. We collected 6777 larvae of four nettle-feeding butterfly species (Aglais urticae, Aglais io, Ar. levana and Vanessa atalanta), over two years, at 19 sites distributed along the gradient. We documented the parasitoid complex for each butterfly species and measured their overlap, and analysed how parasitism rates were affected by butterfly species assemblage, variations in abundance, time, and the arrival of Ar. levana. Parasitoids caused high mortality, with substantial overlap in the complex of parasitoids associated with the four host butterflies. Levels of parasitism differed significantly among butterflies and were influenced by the local butterfly species assemblage. Our results also suggest that parasitism in resident butterflies is elevated at sites where Ar. levana has been established for a longer period. In our study system, variations in butterfly species assemblages were associated in a predictable way with substantial variations in rates of parasitism. This relationship is likely to affect the dynamics of the butterfly host species, and potentially cascade to the larger number of species with which they interact. These results highlight the importance of indirect interactions and their potential to reorganise ecological communities, especially in the context of shifts in species distributions in a warmer world.
  •  
7.
  • Audusseau, Hélène, et al. (författare)
  • Species range expansion constrains the ecological niches of resident butterflies
  • 2017
  • Ingår i: Journal of Biogeography. - : Wiley. - 0305-0270 .- 1365-2699. ; 44:1, s. 28-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Changes in community composition resulting from environmental changes modify biotic interactions and affect the distribution and density of local populations. Such changes are currently occurring in nettle-feeding butterflies in Sweden where Araschnia levana has recently expanded its range northward and is now likely to interact with resident species (Aglais urticae and Aglais io). Butterfly occurrence data collected over years and across regions enabled us to investigate how a recent range expansion of A. levana may have affected the environmental niche of resident species.Location: We focused on two regions of Sweden (Skane and Norrstrom) where A. levana has and has not established and two time periods (2001-2006 and 2009-2012) during its establishment in Skane.Methods: We performed two distinct analyses in each region using the PCA-env and the framework described in Broennimann etal. (2012). First, we described the main sources of variation in the environment. Second, in each time period and region, we characterized the realized niches of our focal species across topographic and land use gradients. Third, we quantified overlaps and differences in realized niches between and within species over time.Results: In Skane, A. levana has stabilized its distribution over time, while the distribution of the native species has shifted. These shifts depicted a consistent pattern of avoiding overlap between the native species and the environmental space occupied by A. levana, and it was stronger for A. urticae than for A. io. In both regions, we also found evidence of niche partitioning between native species.Main conclusions: Interspecific interactions are likely to affect local species distributions. It appears that the ongoing establishment of A. levana has modified local biotic interactions and induced shifts in resident species distributions. Among the mechanisms that can explain such patterns of niche partitioning, parasitoid-driven apparent competition may play an important role in this community.
  •  
8.
  • Audusseau, Hélène, et al. (författare)
  • Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host
  • 2016
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In plant-feeding insects, the evolutionary retention of polyphagy remains puzzling. A better understanding of the relationship between these organisms and changes in the metabolome of their host plants is likely to suggest functional links between them, and may provide insights into how polyphagy is maintained. Results: We investigated the phenological change of Cynoglossum officinale, and how a generalist butterfly species, Vanessa cardui, responded to this change. We used untargeted metabolite profiling to map plant seasonal changes in both primary and secondary metabolites. We compared these data to differences in larval performance on vegetative plants early and late in the season. We also performed two oviposition preference experiments to test females' ability to choose between plant developmental stages (vegetative and reproductive) early and late in the season. We found clear seasonal changes in plant primary and secondary metabolites that correlated with larval performance. The seasonal change in plant metabolome reflected changes in both nutrition and toxicity and resulted in zero survival in the late period. However, large differences among families in larval ability to feed on C. officinale suggest that there is genetic variation for performance on this host. Moreover, females accepted all plants for oviposition, and were not able to discriminate between plant developmental stages, in spite of the observed overall differences in metabolite profile potentially associated with differences in suitability as larval food. Conclusions: In V. cardui, migratory behavior, and thus larval feeding times, are not synchronized with plant phenology at the reproductive site. This lack of synchronization, coupled with the observed lack of discriminatory oviposition, obviously has potential fitness costs. However, this opportunistic behavior may as well function as a source of potential host plant evolution, promoting for example the acceptance of new plants.
  •  
9.
  • Nylin, Sören, et al. (författare)
  • Vestiges of an ancestral host plant: preference and performance in the butterfly Polygonia faunus and its sister species P. c-album
  • 2015
  • Ingår i: Ecological Entomology. - : Wiley. - 0307-6946 .- 1365-2311. ; 40:3, s. 307-315
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. In the study of the evolution of insect-host plant interactions, important information is provided by host ranking correspondences among female preference, offspring preference, and offspring performance. Here, we contrast such patterns in two polyphagous sister species in the butterfly family Nymphalidae, the Nearctic Polygonia faunus, and the Palearctic P. c-album. 2. These two species have similar host ranges, but according to the literature P. faunus does not use the ancestral host plant clade-the urticalean rosids'. Comparisons of the species can thus test the effects of a change in insect-plant associations over a long time scale. Cage experiments confirmed that P. faunus females avoid laying eggs on Urtica dioica (the preferred host of P. c-album), instead preferring Salix, Betula, and Ribes.3. However, newly hatched larvae of both species readily accept and grow well on U. dioica, supporting the general theory that evolutionary changes in host range are initiated through shifts in female host preferences, whereas larvae are more conservative and also can retain the capacity to perform well on ancestral hosts over long time spans.4. Similar rankings of host plants among female preference, offspring preference, and offspring performance were observed in P. c-album but not in P. faunus. This is probably a result of vestiges of larval adaptations to the lost ancestral host taxon in the latter species. 5. Female and larval preferences seem to be largely free to evolve independently, and consequently larval preferences warrant more attention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy