SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aufschnaiter Andreas) "

Sökning: WFRF:(Aufschnaiter Andreas)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Singh, Abeer Prakash, 1988, et al. (författare)
  • Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis
  • 2020
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765 .- 1097-4164. ; 79:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondria contain their own gene expression systems, including membrane-bound ribosomes dedicated to synthesizing a few hydrophobic subunits of the oxidative phosphorylation (OXPHOS) complexes. We used a proximity-dependent biotinylation technique, BiolD, coupled with mass spectrometry to delineate in baker's yeast a comprehensive network of factors involved in biogenesis of mitochondrial encoded proteins. This mitochondrial gene expression network (MiGENet) encompasses proteins involved in transcription, RNA processing, translation, or protein biogenesis. Our analyses indicate the spatial organization of these processes, thereby revealing basic mechanistic principles and the proteins populating strategically important sites. For example, newly synthesized proteins are directly handed over to ribosomal tunnel exit-bound factors that mediate membrane insertion, co-factor acquisition, or their mounting into OXPHOS complexes in a special early assembly hub. Collectively, the data reveal the connectivity of mitochondrial gene expression, reflecting a unique tailoring of the mitochondrial gene expression system.
  •  
2.
  • Aufschnaiter, Andreas, et al. (författare)
  • Taking out the garbage : cathepsin D and calcineurin in neurodegeneration
  • 2017
  • Ingår i: Neural Regeneration Research. - : Medknow. - 1673-5374 .- 1876-7958. ; 12:11, s. 1776-1779
  • Forskningsöversikt (refereegranskat)abstract
    • Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to maintain cellular health over decades. Thus, a functional decline of processes contributing to protein degradation such as autophagy and general lysosomal proteolytic capacity is connected to several age-associated neurodegenerative disorders, including Parkinson's, Alzheimer's and Huntington's diseases. These so called proteinopathies are characterized by the accumulation and misfolding of distinct proteins, subsequently driving cellular demise. We recently linked efficient lysosomal protein breakdown via the protease cathepsin D to the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for Parkinson's disease, functional calcineurin was required for proper trafficking of cathepsin D to the lysosome and for recycling of its endosomal sorting receptor to allow further rounds of shuttling. Here, we discuss these findings in relation to present knowledge about the involvement of cathepsin D in proteinopathies in general and a possible connection between this protease, calcineurin signalling and endosomal sorting in particular. As dysregulation of Ca2+ homeostasis as well as lysosomal impairment is connected to a plethora of neurodegenerative disorders, this novel interplay might very well impact pathologies beyond Parkinson's disease.
  •  
3.
  • Aufschnaiter, Andreas, et al. (författare)
  • The Coordinated Action of Calcineurin and Cathepsin D Protects Against alpha-Synuclein Toxicity
  • 2017
  • Ingår i: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The degeneration of dopaminergic neurons during Parkinson's disease (PD) is intimately linked to malfunction of alpha-synuclein (alpha Syn), the main component of the proteinaceous intracellular inclusions characteristic for this pathology. The cytotoxicity of alpha Syn has been attributed to disturbances in several biological processes conserved from yeast to humans, including Ca2+ homeostasis, general lysosomal function and autophagy. However, the precise sequence of events that eventually results in cell death remains unclear. Here, we establish a connection between the major lysosomal protease cathepsin D (CatD) and the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for PD, high levels of human alpha Syn triggered cytosolic acidification and reduced vacuolar hydrolytic capacity, finally leading to cell death. This could be counteracted by overexpression of yeast CatD (Pep4), which re-installed pH homeostasis and vacuolar proteolytic function, decreased alpha Syn oligomers and aggregates, and provided cytoprotection. Interestingly, these beneficial effects of Pep4 were independent of autophagy. Instead, they required functional calcineurin signaling, since deletion of calcineurin strongly reduced both the proteolytic activity of endogenous Pep4 and the cytoprotective capacity of overexpressed Pep4. Calcineurin contributed to proper endosomal targeting of Pep4 to the vacuole and the recycling of the Pep4 sorting receptor Pep1 from prevacuolar compartments back to the trans-Golgi network. Altogether, we demonstrate that stimulation of this novel calcineurin-Pep4 axis reduces alpha Syn cytotoxicity.
  •  
4.
  • Aufschnaiter, Andreas, Dr. rer. nat. 1988-, et al. (författare)
  • Yeast Mitoribosome Purification and Analyses by Sucrose Density Centrifugation and Immunoprecipitation
  • 2023
  • Ingår i: Methods in Molecular Biology. - : Humana Press. - 1064-3745 .- 1940-6029. ; , s. 119-132, s. 119-132
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Mitochondrial protein biosynthesis is maintained by an interplay between the mitochondrial ribosome (mitoribosome) and a large set of protein interaction partners. This interactome regulates a diverse set of functions, including mitochondrial gene expression, translation, protein quality control, and respiratory chain assembly. Hence, robust methods to biochemically and structurally analyze this molecular machinery are required to understand the sophisticated regulation of mitochondrial protein biosynthesis. In this chapter, we present detailed protocols for immunoprecipitation, sucrose cushions, and linear sucrose gradients to purify and analyze mitoribosomes and their interaction partners.
  •  
5.
  • Berndtsson, Jens, et al. (författare)
  • Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance
  • 2020
  • Ingår i: Embo Reports. - : EMBO. - 1469-221X .- 1469-3178. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory chains are crucial for cellular energy conversion and consist of multi-subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high-resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochromec between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochromec. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.
  •  
6.
  • Dickinson, Q., et al. (författare)
  • Multi-omic integration by machine learning (MIMaL)
  • 2022
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 38:21, s. 4908-4918
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Cells respond to environments by regulating gene expression to exploit resources optimally. Recent advances in technologies allow for measuring the abundances of RNA, proteins, lipids and metabolites. These highly complex datasets reflect the states of the different layers in a biological system. Multi-omics is the integration of these disparate methods and data to gain a clearer picture of the biological state. Multi-omic studies of the proteome and metabolome are becoming more common as mass spectrometry technology continues to be democratized. However, knowledge extraction through the integration of these data remains challenging. Results: Connections between molecules in different omic layers were discovered through a combination of machine learning and model interpretation. Discovered connections reflected protein control (ProC) over metabolites. Proteins discovered to control citrate were mapped onto known genetic and metabolic networks, revealing that these protein regulators are novel. Further, clustering the magnitudes of ProC over all metabolites enabled the prediction of five gene functions, each of which was validated experimentally. Two uncharacterized genes, YJR120W and YDL157C, were accurately predicted to modulate mitochondrial translation. Functions for three incompletely characterized genes were also predicted and validated, including SDH9, ISC1 and FMP52. A website enables results exploration and also MIMaL analysis of user-supplied multi-omic data.
  •  
7.
  • Gross, Angelina S., et al. (författare)
  • Acetyl-CoA carboxylase 1-dependent lipogenesis promotes autophagy downstream of AMPK
  • 2019
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294:32, s. 12020-12039
  • Tidskriftsartikel (refereegranskat)abstract
    • Autophagy, a membrane-dependent catabolic process, ensures survival of aging cells and depends on the cellular energetic status. Acetyl-CoA carboxylase 1 (Acc1) connects central energy metabolism to lipid biosynthesis and is rate-limiting for the de novo synthesis of lipids. However, it is unclear how de novo lipogenesis and its metabolic consequences affect autophagic activity. Here, we show that in aging yeast, autophagy levels highly depend on the activity of Acc1. Constitutively active Acc1 (acc1(S/A)) or a deletion of the Acc1 negative regulator, Snf1 (yeast AMPK), shows elevated autophagy levels, which can be reversed by the Acc1 inhibitor soraphen A. Vice versa, pharmacological inhibition of Acc1 drastically reduces cell survival and results in the accumulation of Atg8-positive structures at the vacuolar membrane, suggesting late defects in the autophagic cascade. As expected, acc1(S/A) cells exhibit a reduction in acetate/acetyl-CoA availability along with elevated cellular lipid content. However, concomitant administration of acetate fails to fully revert the increase in autophagy exerted by acc1(S/A). Instead, administration of oleate, while mimicking constitutively active Acc1 in WT cells, alleviates the vacuolar fusion defects induced by Acc1 inhibition. Our results argue for a largely lipid-dependent process of autophagy regulation downstream of Acc1. We present a versatile genetic model to investigate the complex relationship between acetate metabolism, lipid homeostasis, and autophagy and propose Acc1-dependent lipogenesis as a fundamental metabolic path downstream of Snf1 to maintain autophagy and survival during cellular aging.
  •  
8.
  • Gross, Angelina S., et al. (författare)
  • Acetyl-CoA carboxylase 1–dependent lipogenesis promotes autophagy downstream of AMPK
  • 2019
  • Ingår i: Journal of Biological Chemistry. - : Elsevier. - 0021-9258 .- 1083-351X. ; 294:32, s. 12020-12039
  • Tidskriftsartikel (refereegranskat)abstract
    • Autophagy, a membrane-dependent catabolic process, ensures survival of aging cells and depends on the cellular energetic status. Acetyl-CoA carboxylase 1 (Acc1) connects central energy metabolism to lipid biosynthesis and is rate-limiting for the de novo synthesis of lipids. However, it is unclear how de novo lipogenesis and its metabolic consequences affect autophagic activity. Here, we show that in aging yeast, autophagy levels highly depend on the activity of Acc1. Constitutively active Acc1 (acc1S/A) or a deletion of the Acc1 negative regulator, Snf1 (yeast AMPK), shows elevated autophagy levels, which can be reversed by the Acc1 inhibitor soraphen A. Vice versa, pharmacological inhibition of Acc1 drastically reduces cell survival and results in the accumulation of Atg8-positive structures at the vacuolar membrane, suggesting late defects in the autophagic cascade. As expected, acc1S/A cells exhibit a reduction in acetate/acetyl-CoA availability along with elevated cellular lipid content. However, concomitant administration of acetate fails to fully revert the increase in autophagy exerted by acc1S/A. Instead, administration of oleate, while mimicking constitutively active Acc1 in WT cells, alleviates the vacuolar fusion defects induced by Acc1 inhibition. Our results argue for a largely lipid-dependent process of autophagy regulation downstream of Acc1. We present a versatile genetic model to investigate the complex relationship between acetate metabolism, lipid homeostasis, and autophagy and propose Acc1-dependent lipogenesis as a fundamental metabolic path downstream of Snf1 to maintain autophagy and survival during cellular aging.
  •  
9.
  • Kohler, Andreas, 1988-, et al. (författare)
  • Apitoxin and its components against cancer, neurodegeneration and rheumatoid arthritis : limitations and possibilities
  • 2020
  • Ingår i: Toxins. - : MDPI. - 2072-6651. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural products represent important sources for the discovery and design of novel drugs. Bee venom and its isolated components have been intensively studied with respect to their potential to counteract or ameliorate diverse human diseases. Despite extensive research and significant advances in recent years, multifactorial diseases such as cancer, rheumatoid arthritis and neurodegenerative diseases remain major healthcare issues at present. Although pure bee venom, apitoxin, is mostly described to mediate anti-inflammatory, anti-arthritic and neuroprotective effects, its primary component melittin may represent an anticancer therapeutic. In this review, we approach the possibilities and limitations of apitoxin and its components in the treatment of these multifactorial diseases. We further discuss the observed unspecific cytotoxicity of melittin that strongly restricts its therapeutic use and review interesting possibilities of a beneficial use by selectively targeting melittin to cancer cells.
  •  
10.
  • Kohler, Andreas, Dr. rer. nat. 1988-, et al. (författare)
  • Mitochondrial lipids in neurodegeneration
  • 2016
  • Ingår i: Cell and Tissue Research. - : Springer. - 0302-766X .- 1432-0878. ; 367:1, s. 125-140
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer’s or Parkinson’s disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28
Typ av publikation
tidskriftsartikel (22)
forskningsöversikt (3)
annan publikation (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Büttner, Sabrina (21)
Aufschnaiter, Andrea ... (19)
Aufschnaiter, Andrea ... (9)
Kohler, Verena, 1992 ... (9)
Diessl, Jutta (8)
Kohler, Andreas, Dr. ... (8)
visa fler...
Habernig, Lukas (7)
Ott, Martin, 1974 (6)
Eisenberg, Tobias (6)
Broeskamp, Filomena (5)
Keller, Walter (5)
Kohler, Andreas, 198 ... (4)
Carmona-Gutierrez, D ... (4)
Peselj, Carlotta (4)
Ott, Martin (3)
Dawitz, Hannah (3)
Urbauer, Elisabeth (3)
de Ory, Ana (3)
Ädelroth, Pia (2)
Carlström, Andreas (2)
Zimmermann, Andreas (2)
Shevchenko, Andrej (2)
Knittelfelder, Oskar (2)
Ruckenstuhl, Christo ... (2)
Schroeder, Sabrina (2)
Atienza, Isabel (2)
Matz, Steffen (2)
Pendl, Tobias (2)
Gross, Angelina S. (2)
Fedotovskaya, Olga (2)
Probst, Ines (2)
Grohmann, Elisabeth (2)
Müller, Rolf (2)
Schoenlechner, Hanne ... (2)
Lamplmayr, Laura (2)
Santiso, Ana (2)
Waltenstorfer, Danie ... (2)
Ortonobes Lara, Sand ... (2)
Stryeck, Sarah (2)
Kast, Christina (2)
Hofer, Sebastian J. (2)
Michelitsch, Birgit (2)
Woelflingseder, Mart ... (2)
Madl, Tobias (2)
Fröhlich, Kai-Uwe (2)
Wolinski, Heimo (2)
Braun, Ralf J. (2)
Leibiger, Christine (2)
Deisel, Jana (2)
Ambros, Stefanie (2)
visa färre...
Lärosäte
Umeå universitet (21)
Stockholms universitet (21)
Göteborgs universitet (6)
Uppsala universitet (1)
Språk
Engelska (26)
Tyska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (25)
Medicin och hälsovetenskap (15)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy