SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aunai N.) "

Sökning: WFRF:(Aunai N.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aunai, N., et al. (författare)
  • The proton pressure tensor as a new proxy of the proton decoupling region in collisionless magnetic reconnection
  • 2011
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 29:9, s. 1571-1579
  • Tidskriftsartikel (refereegranskat)abstract
    • Cluster data is analyzed to test the proton pressure tensor variations as a proxy of the proton decoupling region in collisionless magnetic reconnection. The Hall electric potential well created in the proton decoupling region results in bounce trajectories of the protons which appears as a characteristic variation of one of the in-plane off-diagonal components of the proton pressure tensor in this region. The event studied in this paper is found to be consistent with classical Hall field signatures with a possible 20% guide field. Moreover, correlations between this pressure tensor component, magnetic field and bulk flow are proposed and validated, together with the expected counterstreaming proton distribution functions.
  •  
2.
  • Fuselier, S. A., et al. (författare)
  • High-density O+ in Earth's outer magnetosphere and its effect on dayside magnetopause magnetic reconnection
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:12, s. 10257-10269
  • Tidskriftsartikel (refereegranskat)abstract
    • The warm plasma cloak is a source of magnetospheric plasma that contain significant O+. When the O+ density in the magnetosphere near the magnetopause is >0.2 cm(-3) and the H+ density is <1.5 cm(-3), then O+ dominates the magnetospheric ion mass density by more than a factor of 2. A survey is conducted of such O+-rich warm plasma cloak intervals and their effect on reconnection at the Earth's magnetopause. The survey uses data from the Magnetospheric Multiscale mission (MMS) and the results are compared and combined with a previous survey of the warm plasma cloak. Overall, the warm plasma cloak and the O+-rich warm plasma cloak reduce the magnetopause reconnection rate by >20% due to mass-loading only about 2% to 4% of the time. However, during geomagnetic storms, O+ dominates the mass density of the warm plasma cloak and these mass densities are very high. Therefore, a separate study is conducted to determine the effect of the warm plasma cloak on magnetopause reconnection during geomagnetically disturbed times. This study shows that the warm plasma cloak reduces the reconnection rate significantly about 25% of the time during disturbed conditions.
  •  
3.
  • Fuselier, S. A., et al. (författare)
  • Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:12, s. 6204-6213
  • Tidskriftsartikel (refereegranskat)abstract
    • When the interplanetary magnetic field is northward for a period of time, O+ from the high-latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual-lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+-rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high-shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high-latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.
  •  
4.
  • Huang, S. Y., et al. (författare)
  • MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:15, s. 7850-7858
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 d(i), where d(i) is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma.
  •  
5.
  • Lavraud, B., et al. (författare)
  • Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:7, s. 3042-3050
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on high-resolution measurements from NASA's Magnetospheric Multiscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20 eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
  •  
6.
  • Lenouvel, Q., et al. (författare)
  • Identification of Electron Diffusion Regions with a Machine Learning Approach on MMS Data at the Earth's Magnetopause
  • 2021
  • Ingår i: Earth and Space Science. - : American Geophysical Union (AGU). - 2333-5084. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • This article presents 18 magnetic reconnection electron diffusion region (EDR) candidates found using a neural network algorithm with the Magnetospheric Multiscale Mission phase 1a data at the Earth's dayside magnetopause. These new candidates are compared to the 32 previously reported dayside EDRs listed in Webster et al. (2018), , which constitute the training database of our algorithm. One of the main parameters used is a scalar quantity called "MeanRL" which is based on the asymmetry of the electron velocity distribution function and better identifies electron agyrotropy in the plane perpendicular to the magnetic field. In the light of the new EDR candidates found, we discuss and analyze the sign of the energy dissipation during the reconnection process and the distinction between the inner and outer EDRs, with 40% of the candidates showing negative or oscillating dissipation. We also present in details one of the new identified EDR candidates.
  •  
7.
  • Toledo-Redondo, Sergio, et al. (författare)
  • Cold ion heating at the dayside magnetopause during magnetic reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:1, s. 58-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold ions of ionospheric origin are known to be present in the magnetospheric side of the Earth's magnetopause. They can be very abundant, with densities up to 100cm(-3). These cold ions can mass load the magnetosphere, changing global parameters of magnetic reconnection, like the Alfven speed or the reconnection rate. In addition they introduce a new length scale related to their gyroradius and kinetic effects which must be accounted for. We report in situ observations of cold ion heating in the separatrix owing to time and space fluctuations of the electric field. When this occurs, the cold ions are preheated before crossing the Hall electric field barrier. However, when this mechanism is not present cold ions can be observed well inside the reconnection exhaust. Our observations suggest that the perpendicular cold ion heating is stronger close to the X line owing to waves and electric field gradients linked to the reconnection process.
  •  
8.
  • Toledo-Redondo, S., et al. (författare)
  • Impacts of Ionospheric Ions on Magnetic Reconnection and Earth's Magnetosphere Dynamics
  • 2021
  • Ingår i: Reviews of geophysics. - : John Wiley & Sons. - 8755-1209 .- 1944-9208. ; 59:3
  • Forskningsöversikt (refereegranskat)abstract
    • Ionospheric ions (mainly H+, He+, and O+) escape from the ionosphere and populate the Earth's magnetosphere. Their thermal energies are usually low when they first escape the ionosphere, typically a few electron volt to tens of electron volt, but they are energized in their journey through the magnetosphere. The ionospheric population is variable, and it makes significant contributions to the magnetospheric mass density in key regions where magnetic reconnection is at work. Solar wind—magnetosphere coupling occurs primarily via magnetic reconnection, a key plasma process that enables transfer of mass and energy into the near-Earth space environment. Reconnection leads to the triggering of magnetospheric storms, auroras, energetic particle precipitation and a host of other magnetospheric phenomena. Several works in the last decades have attempted to statistically quantify the amount of ionospheric plasma supplied to the magnetosphere, including the two key regions where magnetic reconnection occurs: the dayside magnetopause and the magnetotail. Recent in situ observations by the Magnetospheric Multiscale spacecraft and associated modeling have advanced our current understanding of how ionospheric ions alter the magnetic reconnection process, including its onset and efficiency. This article compiles the current understanding of the ionospheric plasma supply to the magnetosphere. It reviews both the quantification of these sources and their effects on the process of magnetic reconnection. It also provides a global description of how the ionospheric ion contribution modifies the way the solar wind couples to the Earth's magnetosphere and how these ions modify the global dynamics of the near-Earth space environment.Plain Language SummaryAbove the neutral atmosphere, space is filled with charged particles, which are tied to the Earth's magnetic field. The particles come from two sources, the solar wind and the Earth's upper atmosphere. Most of the solar wind particles are deflected by the Earth´s magnetic field, but some can penetrate into near-Earth space. The ionized layer of the upper atmosphere is continuously ejecting particles into space, which have low energies and are difficult to measure. We investigate the relative importance of the two charged particle sources for the dynamics of plasma processes in near-Earth space. In particular, we consider the effects of these sources in magnetic reconnection. Magnetic reconnection allows initially separated plasma regions to become magnetically connected and mix, and converts magnetic energy to kinetic energy of charged particles. Magnetic reconnection is the main driver of geomagnetic activity in the near-Earth space, and is responsible for the release of energy that drives a variety of space weather effects. We highlight the fact that plasma from the ionized upper atmosphere contributes a significant part of the density in the key regions where magnetic reconnection is at work, and that this contribution is larger when the geomagnetic activity is high.
  •  
9.
  • Toledo-Redondo, S., et al. (författare)
  • Solar Wind-Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions : Simultaneous Multi-Point Observations
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:11
  • Tidskriftsartikel (refereegranskat)abstract
    • In-situ spacecraft missions are powerful assets to study processes that occur in space plasmas. One of their main limitations, however, is extrapolating such local measurements to the global scales of the system. To overcome this problem at least partially, multi-point measurements can be used. There are several multi-spacecraft missions currently operating in the Earth's magnetosphere, and the simultaneous use of the data collected by them provides new insights into the large-scale properties and evolution of magnetospheric plasma processes. In this work, we focus on studying the Earth's magnetopause (MP) using a conjunction between the Magnetospheric Multiscale and Cluster fleets, when both missions skimmed the MP for several hours at distant locations during radial interplanetary magnetic field (IMF) conditions. The observed MP positions as a function of the evolving solar wind conditions are compared to model predictions of the MP. We observe an inflation of the magnetosphere (similar to 0.7 R-E), consistent with magnetosheath pressure decrease during radial IMF conditions, which is less pronounced on the flank (<0.2 R-E). There is observational evidence of magnetic reconnection in the subsolar region for the whole encounter, and in the dusk flank for the last portion of the encounter, suggesting that reconnection was extending more than 15 R-E. However, reconnection jets were not always observed, suggesting that reconnection was patchy, intermittent or both. Shear flows reduce the reconnection rate up to similar to 30% in the dusk flank according to predictions, and the plasma beta enhancement in the magnetosheath during radial IMF favors reconnection suppression by the diamagnetic drift.
  •  
10.
  • Vernisse, Y., et al. (författare)
  • Signatures of complex magnetic topologies from multiple reconnection sites induced by Kelvin-Helmholtz instability
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:10, s. 9926-9939
  • Tidskriftsartikel (refereegranskat)abstract
    • The Magnetospheric Multiscale mission has demonstrated the frequent presence of reconnection exhausts at thin current sheets within Kelvin-Helmholtz (KH) waves at the flank magnetopause. Motivated by these recent observations, we performed a statistical analysis of the boundary layers on the magnetosheath side of all KH current sheets on 8 September 2015. We show 86% consistency between the exhaust flows and particle leakage in the magnetosheath boundary layers but further highlight the very frequent presence of additional boundary layer signatures that do not come from the locally observed reconnection exhausts. These additional electron and ion boundary layers, of various durations and at various positions with respect to the leading and trailing boundaries of the KH waves, signal connections to reconnection sites at other locations. Based on the directionality and extent of these layers, we provide an interpretation whereby complex magnetic topologies can arise within KH waves from the combination of reconnection in the equatorial plane and at midlatitudes in the Southern and Northern Hemispheres, where additional reconnection sites are expected to be triggered by the three-dimensional field lines interweaving induced by the KH waves at the flanks (owing to differential flow and magnetic field shear with latitude). The present event demonstrates that the three-dimensional development of KH waves can induce plasma entry (through reconnection at both midlatitude and equatorial regions) already sunward of the terminator where the instability remains in its linear stage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy