SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Auster U.) "

Sökning: WFRF:(Auster U.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Richter, I., et al. (författare)
  • Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:8, s. 1031-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (delta B/B similar to 1), compressional magnetic field oscillations at similar to 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.
  •  
2.
  • Angelopoulos, V., et al. (författare)
  • First Results from the THEMIS Mission
  • 2008
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 141:1-4, s. 453-476
  • Forskningsöversikt (refereegranskat)abstract
    • THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 R-E along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.
  •  
3.
  • Brown, P., et al. (författare)
  • Meeting the Magnetic Emc Challenges for the In-Situ Field Measurements on the Juice Mission
  • 2019
  • Ingår i: Proceedings of 2019 ESA Workshop on Aerospace EMC (Aerospace EMC). - : IEEE. - 9789082684780
  • Konferensbidrag (refereegranskat)abstract
    • The JUICE (JUpiter ICy moon Explorer) mission features instrument designs tailored to meet the specific challenges of the respective measuring environment, including EMC constraints. We describe the magnetic field science requirements for this mission and show how they drive the EMC requirements on the spacecraft and selected in-situ instrument configurations. We describe the results of two mutual interference campaigns and discuss the design mitigations employed in order to realise in-situ magnetic and electric field data in-flight with the accuracy required to meet very challenging mission science goals.
  •  
4.
  • Cully, Chris M., et al. (författare)
  • Observational evidence of the generation mechanism for rising-tone chorus
  • 2011
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 38:1, s. L01106-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chorus emissions are a striking feature of the electromagnetic wave environment in the Earth's magnetosphere. These bursts of whistler-mode waves exhibit characteristic frequency sweeps (chirps) believed to result from wave-particle trapping of cyclotron-resonant particles. Based on the theory of Omura et al. (2008), we predict the sweep rates of chorus elements observed by the THEMIS satellites. The predictions use independent observations of the electron distribution functions and have no free parameters. The predicted chirp rates are a function of wave amplitude, and this relation is clearly observed. The predictive success of the theory lends strong support to its underlying physical mechanism: cyclotron-resonant wave-particle trapping.
  •  
5.
  • De Keyser, J., et al. (författare)
  • In situ plasma and neutral gas observation time windows during a comet flyby : Application to the Comet Interceptor mission
  • 2024
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 244
  • Tidskriftsartikel (refereegranskat)abstract
    • A comet flyby, like the one planned for ESA's Comet Interceptor mission, places stringent requirements on spacecraft resources. To plan the time line of in situ plasma and neutral gas observations during the flyby, the size of the comet magnetosphere and neutral coma must be estimated well. For given solar irradiance and solar wind conditions, comet composition, and neutral gas expansion speed, the size of gas coma and magnetosphere during the flyby can be estimated from the gas production rate and the flyby geometry. Combined with flyby velocity, the time spent in these regions can be inferred and a data acquisition plan can be elaborated for each instrument, compatible with the limited data storage capacity. The sizes of magnetosphere and gas coma are found from a statistical analysis based on the probability distributions of gas production rate, flyby velocity, and solar wind conditions. The size of the magnetosphere as measured by bow shock standoff distance is 105-106 km near 1 au in the unlikely case of a Halley-type target comet, down to a nonexistent bow shock for targets with low activity. This translates into durations up to 103-104 seconds. These estimates can be narrowed down when a target is identified far from the Sun, and even more so as its activity can be predicted more reliably closer to the Sun. Plasma and neutral gas instruments on the Comet Interceptor main spacecraft can monitor the entire flyby by using an adaptive data acquisition strategy in the context of a record-and-playback scenario. For probes released from the main spacecraft, the inter-satellite communication link limits the data return. For a slow flyby of an active comet, the probes may not yet be released during the inbound bow shock crossing.
  •  
6.
  • Eastwood, J. P., et al. (författare)
  • THEMIS observations of a hot flow anomaly : Solar wind, magnetosheath, and ground-based measurements
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:17, s. L17S03-
  • Tidskriftsartikel (refereegranskat)abstract
    • The THEMIS spacecraft encountered a Hot Flow Anomaly ( HFA) on the dusk flank of the Earth's bow shock on 4 July 2007, observing it on both sides of the shock. Meanwhile, the THEMIS ground magnetometers traced the progress of the associated Magnetic Impulse Event along the dawn flank of the magnetosphere, providing a unique opportunity to study the transmission of the HFA through the shock and the subsequent downstream response. THEMIS-A, in the solar wind, observed classic HFA signatures. Isotropic electron distributions inside the upstream HFA are attributed to the action of the electron firehose instability. THEMIS-E, just downstream, observed a much more complex disturbance with the pressure perturbation decoupled from the underlying discontinuity. Simple calculations show that the pressure perturbation would be capable of significantly changing the magnetopause location, which is confirmed by the ground-based observations.
  •  
7.
  • Edberg, Niklas J. T., et al. (författare)
  • Simultaneous measurements of Martian plasma boundaries by Rosetta and Mars Express
  • 2009
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:8-9, s. 1085-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first two-spacecraft near-simultaneous observations of the Martian bow shock (BS), magnetic pileup boundary (MPB) and photo-electron boundary (PEB) obtained by the plasma instruments onboard Rosetta and Mars Express during the Rosetta Mars fly by on February 25, 2007. Our observations are compared with shape models for the BS and MPB derived from previous statistical studies. The MPB is found at its expected position but the BS for this event is found significantly closer to the planet than expected for the rather slow and moderately dense solar wind. Cross-calibration of the density measurements on the two spacecraft gives a density profile through the magnetosheath, indicating an increasing solar wind flux during the Rosetta passage which is consistent with the multiple BS crossings at the Rosetta exit.
  •  
8.
  • Edberg, Niklas, et al. (författare)
  • Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:12, s. 4533-4545
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX) on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during similar to 24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF) downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.
  •  
9.
  • Li, W., et al. (författare)
  • Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36:9, s. L09104-
  • Tidskriftsartikel (refereegranskat)abstract
    • Whistler mode chorus waves are receiving increased scientific attention due to their important roles in both acceleration and loss processes of radiation belt electrons. A new global survey of whistler-mode chorus waves is performed using magnetic field filter bank data from the THEMIS spacecraft with 5 probes in near-equatorial orbits. Our results confirm earlier analyses of the strong dependence of wave amplitudes on geomagnetic activity, confinement of nightside emissions to low magnetic latitudes, and extension of dayside emissions to high latitudes. An important new finding is the strong occurrence rate of chorus on the dayside at L > 7, where moderate dayside chorus is present > 10% of the time and can persist even during periods of low geomagnetic activity.
  •  
10.
  • Liu, W. L., et al. (författare)
  • Observation and modeling of the injection observed by THEMIS and LANL satellites during the 23 March 2007 substorm event
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:2, s. A00C18-
  • Tidskriftsartikel (refereegranskat)abstract
    • During the encounter of a substorm on 23 March 2007, the THEMIS constellation observed energetic particle injections and dipolarizations in the premidnight sector. Clear injection and dipolarization signatures were observed during the main intensification by three probes ( A, B, and D) in the region around 11 R-E and 2100 local time ( LT). THEMIS C, which was leading in the constellation at 8.3 R-E, also observed a clear injection signature, but the dipolarization was not so clear. From the timing based on these observations, a fast westward expanding ion injection and dipolarization front was identified. In combination with the energetic particle observations from Los Alamos National Laboratory (LANL) geosynchronous satellites, the particle injection seemed to initiate between 2100 and 0100 LT. This event provides an excellent opportunity to examine the dipolarization and particle injection processes beyond geosynchronous orbit and over a wide LT range. We model this injection event by means of test particle simulation, setting up an initial particle distribution and sending an earthward dipolarization-like pulse from the tail that also expands azimuthally, then recording the ions and electrons at the various satellite locations. Most features of the injected particles are reproduced by the test particle simulation. These include not only the earthward injections but also the fast westward expansion of the injection, as well as the timing of the injections as observed among different satellites that made the observations. On the basis of the observations and the simulation results, we suggest that this substorm injection was initiated around 2300 LT, farther down the tail, and propagated radially inward and expanded azimuthally.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy