SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Avni B) "

Sökning: WFRF:(Avni B)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fluet-Chouinard, Etienne, et al. (författare)
  • Extensive global wetland loss over the past three centuries
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 614:7947, s. 281-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9–3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16–23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.
  •  
3.
  •  
4.
  •  
5.
  • Harden, Jennifer W., et al. (författare)
  • Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:2, s. e705-e718
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.
  •  
6.
  • Malhotra, Avni, et al. (författare)
  • The landscape of soil carbon data : emerging questions, synergies and databases
  • 2019
  • Ingår i: Progress in physical geography. - : SAGE Publications. - 0309-1333 .- 1477-0296. ; 43:5, s. 707-719
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon has been measured for over a century in applications ranging from understanding biogeochemical processes in natural ecosystems to quantifying the productivity and health of managed systems. Consolidating diverse soil carbon datasets is increasingly important to maximize their value, particularly with growing anthropogenic and climate change pressures. In this progress report, we describe recent advances in soil carbon data led by the International Soil Carbon Network and other networks. We highlight priority areas of research requiring soil carbon data, including (a) quantifying boreal, arctic and wetland carbon stocks, (b) understanding the timescales of soil carbon persistence using radiocarbon and chronosequence studies, (c) synthesizing long-term and experimental data to inform carbon stock vulnerability to global change, (d) quantifying root influences on soil carbon and (e) identifying gaps in model-data integration. We also describe the landscape of soil datasets currently available, highlighting their strengths, weaknesses and synergies. Now more than ever, integrated soil data are needed to inform climate mitigation, land management and agricultural practices. This report will aid new data users in navigating various soil databases and encourage scientists to make their measurements publicly available and to join forces to find soil-related solutions.
  •  
7.
  • Oleszkiewicz, A., et al. (författare)
  • Hedonic perception of odors in children aged 5–8 years is similar across 18 countries : Preliminary data
  • 2022
  • Ingår i: International Journal of Pediatric Otorhinolaryngology. - : Elsevier BV. - 0165-5876 .- 1872-8464. ; 157
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Olfactory preference emerges very early in life, and the sense of smell in children rapidly develops until the second decade of life. It is still unclear whether hedonic perception of odors is shared in children inhabiting different regions of the globe.Methods: Five-hundred ten healthy children (N = 510; ngirls = 256; nboys = 254) aged from 5 to 8 years from 18 countries rated the pleasantness of 17 odors.Results: The hedonic perception of odors in children aged between 5 and 8 years was rather consistent across 18 countries and mainly driven by the qualities of an odor and the overall ability of children to label odorants.Conclusion: Conclusions from this study, being a secondary analysis, are limited to the presented set of odors that were initially selected for the development of U-Sniff test and present null findings for the cross-cultural variability in hedonic perception of odors across 18 countries. These two major issues should be addressed in the future to either contradict or replicate the results presented herewith. This research lays fundament for posing further research questions about the developmental aspects of hedonic perception of odors and opens a new door for investigating cross-cultural differences in chemosensory perception of children.
  •  
8.
  • Treat, Claire C., et al. (författare)
  • Permafrost Carbon : Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems
  • 2024
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 129:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2 sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4 m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year-round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non-growing season emissions and disturbance effects.
  •  
9.
  • Zhang, Zhen, et al. (författare)
  • Characterizing Performance of Freshwater Wetland Methane Models Across Time Scales at FLUXNET-CH4 Sites Using Wavelet Analyses
  • 2023
  • Ingår i: Journal of Geophysical Research: Biogeosciences. - 2169-8953. ; 128:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Process-based land surface models are important tools for estimating global wetland methane (CH4) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site-level patterns of freshwater wetland CH4 fluxes (FCH4) at different time scales. A Monte Carlo approach was developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that (a) significant model-observation disagreements are mainly at multi-day time scales (<15 days); (b) most of the models can capture the CH4 variability at monthly and seasonal time scales (>32 days) for the boreal and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and (d) differences in error pattern are related to model structure (e.g., proxy of CH4 production). Our evaluation suggests the need to accurately replicate FCH4 variability, especially at short time scales, in future wetland CH4 model developments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy