SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Avni H.) "

Sökning: WFRF:(Avni H.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Oleszkiewicz, A., et al. (författare)
  • Hedonic perception of odors in children aged 5–8 years is similar across 18 countries : Preliminary data
  • 2022
  • Ingår i: International Journal of Pediatric Otorhinolaryngology. - : Elsevier BV. - 0165-5876 .- 1872-8464. ; 157
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Olfactory preference emerges very early in life, and the sense of smell in children rapidly develops until the second decade of life. It is still unclear whether hedonic perception of odors is shared in children inhabiting different regions of the globe.Methods: Five-hundred ten healthy children (N = 510; ngirls = 256; nboys = 254) aged from 5 to 8 years from 18 countries rated the pleasantness of 17 odors.Results: The hedonic perception of odors in children aged between 5 and 8 years was rather consistent across 18 countries and mainly driven by the qualities of an odor and the overall ability of children to label odorants.Conclusion: Conclusions from this study, being a secondary analysis, are limited to the presented set of odors that were initially selected for the development of U-Sniff test and present null findings for the cross-cultural variability in hedonic perception of odors across 18 countries. These two major issues should be addressed in the future to either contradict or replicate the results presented herewith. This research lays fundament for posing further research questions about the developmental aspects of hedonic perception of odors and opens a new door for investigating cross-cultural differences in chemosensory perception of children.
  •  
3.
  •  
4.
  • Loranty, Michael M., et al. (författare)
  • Reviews and syntheses : Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:17, s. 5287-5313
  • Forskningsöversikt (refereegranskat)abstract
    • Soils in Arctic and boreal ecosystems store twice as much carbon as the atmosphere, a portion of which may be released as high-latitude soils warm. Some of the uncertainty in the timing and magnitude of the permafrost-climate feedback stems from complex interactions between ecosystem properties and soil thermal dynamics. Terrestrial ecosystems fundamentally regulate the response of permafrost to climate change by influencing surface energy partitioning and the thermal properties of soil itself. Here we review how Arctic and boreal ecosystem processes influence thermal dynamics in permafrost soil and how these linkages may evolve in response to climate change. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined individually (e.g., vegetation, soil moisture, and soil structure), interactions among these processes are less understood. Changes in ecosystem type and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and rapidly changing disturbance regimes will affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function, which depend on the net effects of multiple feedback processes operating across scales in space and time.
  •  
5.
  • Malhotra, Avni, et al. (författare)
  • The landscape of soil carbon data : emerging questions, synergies and databases
  • 2019
  • Ingår i: Progress in physical geography. - : SAGE Publications. - 0309-1333 .- 1477-0296. ; 43:5, s. 707-719
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon has been measured for over a century in applications ranging from understanding biogeochemical processes in natural ecosystems to quantifying the productivity and health of managed systems. Consolidating diverse soil carbon datasets is increasingly important to maximize their value, particularly with growing anthropogenic and climate change pressures. In this progress report, we describe recent advances in soil carbon data led by the International Soil Carbon Network and other networks. We highlight priority areas of research requiring soil carbon data, including (a) quantifying boreal, arctic and wetland carbon stocks, (b) understanding the timescales of soil carbon persistence using radiocarbon and chronosequence studies, (c) synthesizing long-term and experimental data to inform carbon stock vulnerability to global change, (d) quantifying root influences on soil carbon and (e) identifying gaps in model-data integration. We also describe the landscape of soil datasets currently available, highlighting their strengths, weaknesses and synergies. Now more than ever, integrated soil data are needed to inform climate mitigation, land management and agricultural practices. This report will aid new data users in navigating various soil databases and encourage scientists to make their measurements publicly available and to join forces to find soil-related solutions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy