SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Awschalom David D.) "

Sökning: WFRF:(Awschalom David D.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christle, David J., et al. (författare)
  • Isolated electron spins in silicon carbide with millisecond coherence times
  • 2015
  • Ingår i: Nature Materials. - : Nature Publishing Group. - 1476-1122 .- 1476-4660. ; 14:2, s. 160-163
  • Tidskriftsartikel (refereegranskat)abstract
    • The elimination of defects from SiC has facilitated its move to the forefront of the optoelectronics and power-electronics industries(1). Nonetheless, because certain SiC defects have electronic states with sharp optical and spin transitions, they are increasingly recognized as a platform for quantum information and nanoscale sensing(2-16). Here, we show that individual electron spins in high-purity monocrystalline 4H-SiC can be isolated and coherently controlled. Bound to neutral divacancy defects(2,3), these states exhibit exceptionally long ensemble Hahn-echo spin coherence times, exceeding 1 ms. Coherent control of single spins in a material amenable to advanced growth and microfabrication techniques is an exciting route towards wafer-scale quantum technologies.
  •  
2.
  • Christle, David J., et al. (författare)
  • Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface
  • 2017
  • Ingår i: Physical Review X. - : AMER PHYSICAL SOC. - 2160-3308. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.
  •  
3.
  • de las Casas, Charles F., et al. (författare)
  • Stark tuning and electrical charge state control of single divacancies in silicon carbide
  • 2017
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 111:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects and hinders their coupling to optical cavities. Here, we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show that both 975 nm and 1130 nm excitation can prepare their neutral charge state with near unity efficiency. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons. org/licenses/by/4.0/).
  •  
4.
  • Falk, Abram L., et al. (författare)
  • Optical Polarization of Nuclear Spins in Silicon Carbide
  • 2015
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 114:24, s. 247603-
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate optically pumped dynamic nuclear polarization of Si-29 nuclear spins that are strongly coupled to paramagnetic color centers in 4H- and 6H-SiC. The 99% +/- 1% degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 mu K. By combining ab initio theory with the experimental identification of the color centers optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.
  •  
5.
  • Ivády, Viktor, et al. (författare)
  • High-Fidelity Bidirectional Nuclear Qubit Initialization in SiC
  • 2016
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 117:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic nuclear polarization (DNP) is an attractive method for initializing nuclear spins that are strongly coupled to optically active electron spins because it functions at room temperature and does not require strong magnetic fields. In this Letter, we theoretically demonstrate that DNP, with near-unity polarization efficiency, can be generally realized in weakly coupled electron spin-nuclear spin systems. Furthermore, we theoretically and experimentally show that the nuclear spin polarization can be reversed by magnetic field variations as small as 0.8 Gauss. This mechanism offers new avenues for DNP-based sensors and radio-frequency free control of nuclear qubits.
  •  
6.
  • Ivády, Viktor, et al. (författare)
  • Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : AMER PHYSICAL SOC. - 1098-0121 .- 1550-235X. ; 92:11, s. 115206-
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.
  •  
7.
  • Anderson, Christopher P., et al. (författare)
  • Electrical and optical control of single spins integrated in scalable semiconductor devices
  • 2019
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 366:6470, s. 1225-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin defects in silicon carbide have the advantage of exceptional electron spin coherence combined with a near-infrared spin-photon interface, all in a material amenable to modern semiconductor fabrication. Leveraging these advantages, we integrated highly coherent single neutral divacancy spins in commercially available p-i-n structures and fabricated diodes to modulate the local electrical environment of the defects. These devices enable deterministic charge-state control and broad Stark-shift tuning exceeding 850 gigahertz. We show that charge depletion results in a narrowing of the optical linewidths by more than 50-fold, approaching the lifetime limit. These results demonstrate a method for mitigating the ubiquitous problem of spectral diffusion in solid-state emitters by engineering the electrical environment while using classical semiconductor devices to control scalable, spin-based quantum systems.
  •  
8.
  • Anderson, Christopher P., et al. (författare)
  • Five-second coherence of a single spin with single-shot readout in silicon carbide
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • An outstanding hurdle for defect spin qubits in silicon carbide (SiC) is single-shot readout, a deterministic measurement of the quantum state. Here, we demonstrate single-shot readout of single defects in SiC via spin-to-charge conversion, whereby the defects spin state is mapped onto a long-lived charge state. With this technique, we achieve over 80% readout fidelity without pre- or postselection, resulting in a high signal-to-noise ratio that enables us to measure long spin coherence times. Combined with pulsed dynamical decoupling sequences in an isotopically purified host material, we report single-spin T-2 > 5 seconds, over two orders of magnitude greater than previously reported in this system. The mapping of these coherent spin states onto single charges unlocks both single-shot readout for scalable quantum nodes and opportunities for electrical readout via integration with semiconductor devices.
  •  
9.
  • Bourassa, Alexandre, et al. (författare)
  • Entanglement and control of single nuclear spins in isotopically engineered silicon carbide
  • 2020
  • Ingår i: Nature Materials. - : NATURE RESEARCH. - 1476-1122 .- 1476-4660. ; 19:12, s. 1319-1325
  • Tidskriftsartikel (refereegranskat)abstract
    • Isotope engineering of silicon carbide leads to control of nuclear spins associated with single divacancy centres and extended electron spin coherence. Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits. In this work, we demonstrate control of isolated(29)Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks control of single weakly coupled nuclear spins and present an ab initio method to predict the optimal isotopic fraction that maximizes the number of usable nuclear memories. We bolster these results by reporting high-fidelity electron spin control (F = 99.984(1)%), alongside extended coherence times (Hahn-echoT(2) = 2.3 ms, dynamical decouplingT(2)(DD) > 14.5 ms), and a >40-fold increase in Ramsey spin dephasing time (T-2*) from isotopic purification. Overall, this work underlines the importance of controlling the nuclear environment in solid-state systems and links single photon emitters with nuclear registers in an industrially scalable material.
  •  
10.
  • Falk, Abram L., et al. (författare)
  • Electrically and Mechanically Tunable Electron Spins in Silicon Carbide Color Centers
  • 2014
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 112:18, s. 187601-
  • Tidskriftsartikel (refereegranskat)abstract
    • The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy