SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Axelsson Annika S.) "

Sökning: WFRF:(Axelsson Annika S.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axelsson, Annika, et al. (författare)
  • Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is characterized by insulin resistance and impaired insulin secretion, but the mechanisms underlying insulin secretion failure are not completely understood. Here, we show that a set of co-expressed genes, which is enriched for genes with islet-selective open chromatin, is associated with T2D. These genes are perturbed in T2D and have a similar expression pattern to that of dedifferentiated islets. We identify Sox5 as a regulator of the module. Sox5 knockdown induces gene expression changes similar to those observed in T2D and diabetic animals and has profound effects on insulin secretion, including reduced depolarization-evoked Ca 2+-influx and β-cell exocytosis. SOX5 overexpression reverses the expression perturbations observed in a mouse model of T2D, increases the expression of key β-cell genes and improves glucose-stimulated insulin secretion in human islets from donors with T2D. We suggest that human islets in T2D display changes reminiscent of dedifferentiation and highlight SOX5 as a regulator of β-cell phenotype and function.
  •  
2.
  • Axelsson, Annika S., et al. (författare)
  • Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes
  • 2017
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 9:394
  • Tidskriftsartikel (refereegranskat)abstract
    • A potentially useful approach for drug discovery is to connect gene expression profiles of disease-affected tissues ("disease signatures") to drug signatures, but it remains to be shown whether it can be used to identify clinically relevant treatment options. We analyzed coexpression networks and genetic data to identify a disease signature for type 2 diabetes in liver tissue. By interrogating a library of 3800 drug signatures, we identified sulforaphane as a compound that may reverse the disease signature. Sulforaphane suppressed glucose production from hepatic cells by nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and decreased expression of key enzymes in gluconeogenesis. Moreover, sulforaphane reversed the disease signature in the livers from diabetic animals and attenuated exaggerated glucose production and glucose intolerance by a magnitude similar to that of metformin. Finally, sulforaphane, provided as concentrated broccoli sprout extract, reduced fasting blood glucose and glycated hemoglobin (HbA1c) in obese patients with dysregulated type 2 diabetes.
  •  
3.
  • Dwibedi, Chinmay, 1987, et al. (författare)
  • Effect of self-managed lifestyle treatment on glycemic control in patients with type 2 diabetes
  • 2022
  • Ingår i: npj Digital Medicine. - : Nature Research. - 2398-6352. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of effective, scalable solutions for lifestyle treatment is a global clinical problem, causing severe morbidity and mortality. We developed a method for lifestyle treatment that promotes self-reflection and iterative behavioral change, provided as a digital tool, and evaluated its effect in 370 patients with type 2 diabetes (ClinicalTrials.gov identifier: NCT04691973). Users of the tool had reduced blood glucose, both compared with randomized and matched controls (involving 158 and 204 users, respectively), as well as improved systolic blood pressure, body weight and insulin resistance. The improvement was sustained during the entire follow-up (average 730 days). A pathophysiological subgroup of obese insulin-resistant individuals had a pronounced glycemic response, enabling identification of those who would benefit in particular from lifestyle treatment. Natural language processing showed that the metabolic improvement was coupled with the self-reflective element of the tool. The treatment is cost-saving because of improved risk factor control for cardiovascular complications. The findings open an avenue for self-managed lifestyle treatment with long-term metabolic efficacy that is cost-saving and can reach large numbers of people. © 2022, The Author(s).
  •  
4.
  • Flygare, Annika, et al. (författare)
  • Ultrasound measurements of subcutaneous adipose tissue in infants are reproducible
  • 1999
  • Ingår i: Journal of Pediatric Gastroenterology and Nutrition - Jpgn. - 1536-4801. ; 28:5, s. 492-494
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The purpose of this study was to evaluate the ultrasound technique for measuring subcutaneous adipose tissue in infants. METHODS: Twenty infants were investigated at 3, 6, and 12 months of age. All measurements were made by the same investigator in triplicate on the left side of the body at the triceps and subscapular anatomic landmarks and at the abdomen and thigh. An ultrasound system equipped with a linear 7.0-MHz transducer was used. RESULTS: The intraclass correlation coefficients were 0.88 to 0.99. Random errors ranged from 0.01 to 0.19 mm. For log-transformed values, the random error ranged from 2.4% to 5.7%. CONCLUSIONS: Measurements of subcutaneous fat in infants using ultrasound are reproducible when performed by the same observer.
  •  
5.
  • Gad, Helge, et al. (författare)
  • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 508:7495, s. 215-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bindin the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
  •  
6.
  • Hänzelmann, Sonja, et al. (författare)
  • Thrombin stimulates insulin secretion via protease-activated receptor-3.
  • 2015
  • Ingår i: Islets. - : Informa UK Limited. - 1938-2022 .- 1938-2014. ; 7:4, s. 1118195-1118195
  • Tidskriftsartikel (refereegranskat)abstract
    • The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes ('module') including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a 'tethered ligand' to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca(2+) release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D.
  •  
7.
  • Mahdi, Taman, et al. (författare)
  • Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes.
  • 2012
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 16:5, s. 625-633
  • Tidskriftsartikel (refereegranskat)abstract
    • A plethora of candidate genes have been identified for complex polygenic disorders, but the underlying disease mechanisms remain largely unknown. We explored the pathophysiology of type 2 diabetes (T2D) by analyzing global gene expression in human pancreatic islets. A group of coexpressed genes (module), enriched for interleukin-1-related genes, was associated with T2D and reduced insulin secretion. One of the module genes that was highly overexpressed in islets from T2D patients is SFRP4, which encodes secreted frizzled-related protein 4. SFRP4 expression correlated with inflammatory markers, and its release from islets was stimulated by interleukin-1β. Elevated systemic SFRP4 caused reduced glucose tolerance through decreased islet expression of Ca(2+) channels and suppressed insulin exocytosis. SFRP4 thus provides a link between islet inflammation and impaired insulin secretion. Moreover, the protein was increased in serum from T2D patients several years before the diagnosis, suggesting that SFRP4 could be a potential biomarker for islet dysfunction in T2D.
  •  
8.
  • Rosengren, Anders, et al. (författare)
  • Reduced Insulin Exocytosis in Human Pancreatic β-cells With Gene Variants Linked to Type 2 Diabetes.
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 61:7, s. 1726-1733
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors. We assessed the impact of 14 disease susceptibility variants on measures of glucose sensing, exocytosis, and structure. Variants near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion, whereas susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. KCNQ1, ADRA2A, KCNJ11, HHEX/IDE, and SLC2A2 variants affected granule docking. We combined our results to create a novel genetic risk score for β-cell dysfunction that includes aberrant granule docking, decreased Ca(2+) sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. Our results underscore the importance of defects in β-cell exocytosis in T2D and demonstrate the potential of cellular phenotypic characterization in the elucidation of complex genetic disorders.
  •  
9.
  • Tubbs, Emily, et al. (författare)
  • Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production
  • 2018
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 461:C, s. 205-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Exaggerated hepatic glucose production is one of the hallmarks of type 2 diabetes. Sulforaphane (SFN) has been suggested as a new potential anti-diabetic compound. However, the effects of SFN in hepatocytes are yet unclear. Accumulating evidence points to the close structural contacts between the ER and mitochondria, known as mitochondria-associated ER membranes (MAMs), as important hubs for hepatic metabolism. We wanted to investigate whether SFN could affect hepatic glucose production and MAMs. Materials and methods: We used proximity ligation assays, analysis of ER stress markers and glucose production assays in hepatoma cell lines, primary mouse hepatocytes and diabetic animal models. Results: SFN counteracted the increase of glucose production in palmitate-treated mouse hepatocytes. SFN also counteracted palmitate-induced MAM disruptions. Moreover, SFN decreased the ER stress markers CHOP and Grp78. In ob/ob mice, SFN improved glucose tolerance and reduced exaggerated glucose production. In livers of these mice, SFN increased MAM protein content, restored impaired VDAC1-IP3R1 interactions and reduced ER stress markers. In mice on HFHSD, SFN improved glucose tolerance, MAM protein content and ER-mitochondria interactions to a similar extent to that of metformin. Conclusions: The present findings show that MAMs are severely reduced in animal models of glucose intolerance, which reinforces the role of MAMs as a hub for insulin signaling in the liver. We also show that SFN restores MAMs and improves glucose tolerance by a similar magnitude to that of metformin. These data highlight SFN as a new potential anti-diabetic compound. (C) 2017 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy