SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Azzarello P.) "

Sökning: WFRF:(Azzarello P.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
3.
  • Feroci, M., et al. (författare)
  • The Large Observatory for X-ray Timing (LOFT)
  • 2012
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 415-444
  • Tidskriftsartikel (refereegranskat)abstract
    • High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of similar to 12 m(2) (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of < 260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
  •  
4.
  •  
5.
  • Adriani, O., et al. (författare)
  • Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO)
  • 2022
  • Ingår i: Instruments. - : MDPI AG. - 2410-390X. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A new generation magnetic spectrometer in space will open the opportunity to inves-tigate the frontiers in direct high-energy cosmic ray measurements and to precisely measure the amount of the rare antimatter component in cosmic rays beyond the reach of current missions. We propose the concept for an Antimatter Large Acceptance Detector In Orbit (ALADInO), designed to take over the legacy of direct measurements of cosmic rays in space performed by PAMELA and AMS-02. ALADInO features technological solutions conceived to overcome the current limi-tations of magnetic spectrometers in space with a layout that provides an acceptance larger than 10 m2 sr. A superconducting magnet coupled to precision tracking and time-of-flight systems can provide the required matter–antimatter separation capabilities and rigidity measurement resolution with a Maximum Detectable Rigidity better than 20 TV. The inner 3D-imaging deep calorimeter, designed to maximize the isotropic acceptance of particles, allows for the measurement of cosmic rays up to PeV energies with accurate energy resolution to precisely measure features in the cosmic ray spectra. The operations of ALADInO in the Sun–Earth L2 Lagrangian point for at least 5 years would enable unique revolutionary observations with groundbreaking discovery poten-tials in the field of astroparticle physics by precision measurements of electrons, positrons, and antiprotons up to 10 TeV and of nuclear cosmic rays up to PeV energies, and by the possible unam-biguous detection and measurement of low-energy antideuteron and antihelium components in cosmic rays. 
  •  
6.
  • Zhang, S. -N, et al. (författare)
  • Introduction to the high energy cosmic-radiation detection (HERD) facility onboard China's future space station
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads onboard China's Space Station, which is planned for operation starting around 2025 for about 10 years. The main scientific objectives of HERD are searching for signals of dark matter annihilation products, precise cosmic electron (plus positron) spectrum and anisotropy measurements up to 10 TeV, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 7,500 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of six X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side STKs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV and 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified IsCMOS and CALO prototype of 250 LYSO crystals. 
  •  
7.
  • Scandale, Walter, et al. (författare)
  • Apparatus to study crystal channeling and volume reflection phenomena at the SPS H8 beamline
  • 2008
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 79:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A high performance apparatus has been designed and built by the H8-RD22 collaboration for the study of channeling and volume reflection phenomena in the interaction of 400 GeVc protons with bent silicon crystals, during the 2006 data taking in the external beamline H8 of the CERN SPS. High-quality silicon short crystals were bent by either anticlastic or quasimosaic effects. Alignment with the highly parallel (8 μrad divergence) proton beam was guaranteed through a submicroradian goniometric system equipped with both rotational and translational stages. Particle tracking was possible by a series of silicon microstrip detectors with high-resolution and a parallel plate gas chamber, triggered by various scintillating detectors located along the beamline. Experimental observation of volume reflection with 400 GeVc protons proved true with a deflection angle of (10.4±0.5) μrad with respect to the unperturbed beam, with a silicon crystal whose (111) planes were parallel to the beam. © 2008 American Institute of Physics.
  •  
8.
  • Wu, X., et al. (författare)
  • PANGU : A Wide Field Gamma-Ray Imager and Polarimeter
  • 2016
  • Ingår i: SPACE TELESCOPES AND INSTRUMENTATION 2016. - : SPIE - International Society for Optical Engineering. - 9781510601895
  • Konferensbidrag (refereegranskat)abstract
    • PANGU (the PAir-productioN Gamma-ray Unit) is a gamma-ray telescope with a wide field of view optimized for spectro-imaging, timing and polarization studies. It will map the gamma-ray sky from 10 MeV to a few GeV with unprecedented spatial resolution. This window on the Universe is unique to detect photons produced directly by relativistic particles, via the decay of neutral pions, or the annihilation or decay light from anti-matter and the putative light dark matter candidates. A wealth of questions can be probed among the most important themes of modern physics and astrophysics. The PANGU instrument is a pair-conversion gamma-ray telescope based on an innovative design of a silicon strip tracker. It is light, compact and accurate. It consists of 100 layers of silicon micro-strip detectors of 80 x 80 cm(2) in area, stacked to height of about 90 cm, and covered by an anticoincidence detectors. PANGU relies on multiple scattering effects for energy measurement, reaching an energy resolution between 30-50% for 10 MeV - 1GeV. The novel tracker will allow the first polarization measurement and provide the best angular resolution ever obtained in the soft gamma ray and GeV band.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy