SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bäck Jaana) "

Sökning: WFRF:(Bäck Jaana)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
2.
  • Boy, Michael, et al. (författare)
  • Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates
  • 2022
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A multitude of biogeochemical feedback mechanisms govern the climate sensitivity of Earth in response to radiation balance perturbations. One feedback mechanism, which remained missing from most current Earth System Models applied to predict future climate change in IPCC AR6, is the impact of higher temperatures on the emissions of biogenic volatile organic compounds (BVOCs), and their subsequent effects on the hydroxyl radical (OH) concentrations. OH, in turn, is the main sink term for many gaseous compounds including methane, which is the second most important human-influenced greenhouse gas in terms of climate forcing. In this study, we investigate the impact of this feedback mechanism by applying two models, a one-dimensional chemistry-transport model, and a global chemistry-transport model. The results indicate that in a 6 K temperature increase scenario, the BVOC-OH-CH4 feedback increases the lifetime of methane by 11.4% locally over the boreal region when the temperature rise only affects chemical reaction rates, and not both, chemistry and BVOC emissions. This would lead to a local increase in radiative forcing through methane (ΔRFCH4) of approximately 0.013 Wm−2 per year, which is 2.1% of the current ΔRFCH4. In the whole Northern hemisphere, we predict an increase in the concentration of methane by 0.024% per year comparing simulations with temperature increase only in the chemistry or temperature increase in chemistry and BVOC emissions. This equals approximately 7% of the annual growth rate of methane during the years 2008–2017 (6.6 ± 0.3 ppb yr−1) and leads to an ΔRFCH4 of 1.9 mWm−2 per year.
  •  
3.
  • Hari, Pertti, et al. (författare)
  • Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:18, s. 13321-13328
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthesis provides carbon for the synthesis of macromolecules to construct cells during growth. This is the basis for the key role of photosynthesis in the carbon dynamics of ecosystems and in the biogenic CO2 assimilation. The development of eddy-covariance (EC) measurements for ecosystem CO2 fluxes started a new era in the field studies of photosynthesis. However, the interpretation of the very variable CO2 fluxes in evergreen forests has been problematic especially in transition times such as the spring and autumn. We apply two theoretical needle-level equations that connect the variation in the light intensity, stomatal action and the annual metabolic cycle of photosynthesis. We then use these equations to predict the photosynthetic CO2 flux in five Scots pine stands located from the northern timberline to Central Europe. Our result has strong implications for our conceptual understanding of the effects of the global change on the processes in boreal forests, especially of the changes in the metabolic annual cycle of photosynthesis.
  •  
4.
  • Kourtchev, Ivan, et al. (författare)
  • Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.
  •  
5.
  • Kulmala, Markku, et al. (författare)
  • CO2-induced terrestrial climate feedback mechanism : From carbon sink to aerosol source and back
  • 2014
  • Ingår i: Boreal environment research. - 1239-6095 .- 1797-2469. ; 19, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Feedbacks mechanisms are essential components of our climate system, as they either increase or decrease changes in climate-related quantities in the presence of external forcings. In this work, we provide the first quantitative estimate regarding the terrestrial climate feedback loop connecting the increasing atmospheric carbon dioxide concentration, changes in gross primary production (GPP) associated with the carbon uptake, organic aerosol formation in the atmosphere, and transfer of both diffuse and global radiation. Our approach was to combine process-level understanding with comprehensive, long-term field measurement data set collected from a boreal forest site in southern Finland. Our best estimate of the gain in GPP resulting from the feedback is 1.3 (range 1.02-1.5), which is larger than the gains of the few atmospheric chemistry-climate feedbacks estimated using large-scale models. Our analysis demonstrates the power of using comprehensive field measurements in investigating the complicated couplings between the biosphere and atmosphere on one hand, and the need for complementary approaches relying on the combination of field data, satellite observations model simulations on the other hand.
  •  
6.
  • Kulmala, Markku, et al. (författare)
  • Direct Observations of Atmospheric Aerosol Nucleation
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6122, s. 943-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation-more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.
  •  
7.
  • Kulmala, Markku, et al. (författare)
  • Opinion : The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:23, s. 14949-14971
  • Tidskriftsartikel (refereegranskat)abstract
    • To be able to meet global grand challenges (climate change; biodiversity loss; environmental pollution; scarcity of water, food and energy supplies; acidification; deforestation; chemicalization; pandemics), which all are closely interlinked with each other, we need comprehensive open data with proper metadata, along with open science. The large data sets from ground-based in situ observations, ground and satellite remote sensing, and multiscale modeling need to be utilized seamlessly. In this opinion paper, we demonstrate the power of the SMEAR (Station for Measuring Earth surface-Atmosphere Relations) concept via several examples, such as detection of new particle formation and the particles' subsequent growth, quantifying atmosphere-ecosystem feedback loops, and combining comprehensive observations with emergency science and services, as well as studying the effect of COVID-19 restrictions on different air quality and climate variables. The future needs and the potential of comprehensive observations of the environment are summarized.
  •  
8.
  • Li, Haiyan, et al. (författare)
  • Overlooked organic vapor emissions from thawing Arctic permafrost
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 15:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Volatile organic compounds (VOCs) play an essential role in climate change and air pollution by modulating tropospheric oxidation capacity and providing precursors for ozone and aerosol formation. Arctic permafrost buries large quantities of frozen soil carbon, which could be released as VOCs with permafrost thawing or collapsing as a consequence of global warming. However, due to the lack of reported studies in this field and the limited capability of the conventional measurement techniques, it is poorly understood how much VOCs could be emitted from thawing permafrost and the chemical speciation of the released VOCs. Here we apply a Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF) in laboratory incubations for the first time to examine the release of VOCs from thawing permafrost peatland soils sampled from Finnish Lapland. The warming-induced rapid VOC emissions from the thawing soils were mainly attributed to the direct release of old, trapped gases from the permafrost. The average VOC fluxes from thawing permafrost were four times as high as those from the active layer (the top layer of soil in permafrost terrain). The emissions of less volatile compounds, i.e. sesquiterpenes and diterpenes, increased substantially with rising temperatures. Results in this study demonstrate the potential for substantive VOC releases from thawing permafrost. We anticipate that future global warming could stimulate VOC emissions from the Arctic permafrost, which may significantly influence the Arctic atmospheric chemistry and climate change.
  •  
9.
  • Mäki, Mari, et al. (författare)
  • Heterotrophic and rhizospheric respiration in coniferous forest soils along a latitudinal gradient
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 317
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern forest soils are a major carbon (C) reservoir of global importance. To estimate how the C balance in these soils will change, the roles of tree roots and soil microbes in C balance should first be decoupled. This study determined how the activity of heterotrophs and tree roots together with root-associated microbes in the rhizosphere varies in coniferous forest soils in boreal, hemiboreal, and temperate climates along a latitudinal gradient using a trenching approach. We created experimental plots without living tree roots, measured soil respiration (CO2 efflux) from these and from unmanipulated plots using the chamber technique, and partitioned the efflux into root-rhizosphere (RR) and heterotrophic (RH) respiration. The share of RR in ecosystem gross primary production (GPP) decreased from north to south in the Scots pine (Pinus sylvestris L.) and the Norway spruce (Picea abies (L.) Karst.) forests, with the exception of a mixed site, where the share of RR in GPP varied strongly between the years. RR per ground area and per root biomass were mainly independent of climate within the gradient. RH per ground area increased from north to south with temperature, while RH per soil C did not change with temperature. Soil moisture did not significantly affect the respiration components in the northernmost site, whereas soil moisture was positively connected with RH and negatively with RR in other Scots pine sites and positively connected with RR in pure Norway spruce stands. The dynamic ecosystem model LPJ-GUESS was able to capture the seasonal dynamics of RH and RR at the sites, but overall accuracy varied markedly between the sites, as the model underestimated RH in the southern site and RR elsewhere. Our study provides knowledge about the nature of soil respiration components. The valuable insights can be used in more accurate land-ecosystem modelling of forest ecosystems.
  •  
10.
  • Männistö, Elisa, et al. (författare)
  • Emissions of biogenic volatile organic compounds from adjacent boreal fen and bog as impacted by vegetation composition
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 858
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatland ecosystems emit biogenic volatile organic compounds (BVOC), which have a net cooling impact on the climate. However, the quality and quantity of BVOC emissions, and how they are regulated by vegetation and peatland type remain poorly understood. Here we measured BVOC emissions with dynamic enclosures from two major boreal peatland types, a minerotrophic fen and an ombrotrophic bog situated in Siikaneva, southern Finland and experimentally assessed the role of vegetation by removing vascular vegetation with or without the moss layer. Our measurements from four campaigns during growing seasons in 2017 and 2018 identified emissions of 59 compounds from nine different chemical groups. Isoprene accounted for 81 % of BVOC emissions. Measurements also revealed uptake of dichloromethane. Total BVOC emissions and the emissions of isoprene, monoterpenoids, sesquiterpenes, homoterpenes, and green leaf volatiles were tightly connected to vascular plants. Isoprene and sesquiterpene emissions were associated with sedges, whereas monoterpenoids and homoterpenes were associated with shrubs. Additionally, isoprene and alkane emissions were higher in the fen than in the bog and they significantly contributed to the higher BVOC emissions from intact vegetation in the fen. During an extreme drought event in 2018, emissions of organic halides were absent. Our results indicate that climate change with an increase in shrub cover and increased frequency of extreme weather events may have a negative impact on total BVOC emissions that otherwise are predicted to increase in warmer temperatures. However, these changes also accompanied a change in BVOC emission quality. As different compounds differ in their capacity to form secondary organic aerosols, the ultimate climate impact of peatland BVOC emissions may be altered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy