SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bäck Sten Erik) "

Sökning: WFRF:(Bäck Sten Erik)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björk, Jonas, et al. (författare)
  • Accuracy diagrams : a novel way to illustrate uncertainty of estimated GFR
  • 2017
  • Ingår i: Scandinavian Journal of Clinical and Laboratory Investigation. - : Informa UK Limited. - 0036-5513 .- 1502-7686. ; 77:3, s. 199-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Most studies that validate GFR equations present accuracy results stratified by measured GFR (mGFR; diagnostic correctness) or by estimated GFR (eGFR; diagnostic predictiveness) only, without a clear distinction in interpretation. The accuracy of a GFR equation is normally reported in percent (e.g. P30), but is often misinterpreted when stratified by eGFR. The aim of the study was to develop new accuracy measures and diagrams that allow straightforward interpretations and illustrations of the uncertainty in eGFR in clinical practice. We applied quantile regression to the distribution of estimation errors for two creatinine-based GFR equations, LM-REV and CKD-EPI, in a clinical cohort (n = 3495) referred for GFR measurement (plasma clearance of iohexol). Measures of bias and precision and accuracy intervals (AIs) were expressed in mL/min/1.73 m2. Diagrams with AIs were chosen as a novel way to present the error margin in eGFR at a pre-specified certainty level. It was shown that creatinine-based equations are still quite inaccurate in that large estimation errors could not be ruled out with satisfactory certainty. As an example, the 75% AI for the most accurate equation, LM-REV, was approximately ±10 mL/min/1.73 m2 at eGFR = 45 mL/min/1.73 m2, whereas it ranged between −13 and +20 mL/min/1.73 m2 at eGFR = 90 mL/min/1.73 m2. Accuracy intervals presented in diagrams can be used to illustrate the uncertainty of eGFR. Future validation studies should assess the variability in the predictiveness of eGFR across populations and clinical settings using tools and performance measures that are easy to interpret.
  •  
2.
  • Björk, Jonas, et al. (författare)
  • GFR estimation based on standardized creatinine and cystatin C : A European multicenter analysis in older adults
  • 2018
  • Ingår i: Clinical Chemistry and Laboratory Medicine. - : Walter de Gruyter GmbH. - 1437-4331 .- 1434-6621. ; 56:3, s. 422-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Although recommended by the Kidney Disease Improving Global Outcomes, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPICR) creatinine equation was not targeted to estimate glomerular filtration rate (eGFR) among older adults. The Berlin Initiative Study (BIS1CR) equation was specifically developed in older adults, and the Lund-Malmö revised (LMRCR) and the Full Age Spectrum (FASCR) equations have shown promising results in older adults. Our aim was to validate these four creatinine equations, including addition of cystatin C in a large multicenter cohort of Europeans ≥70 years. A total of 3226 individuals (2638 with cystatin C) underwent GFR measurement (mGFR; median, 44 mL/min/1.73 m2) using plasma iohexol clearance. Bias, precision (interquartile range [IQR]), accuracy (percent of estimates ±30% of mGFR, P30), eGFR accuracy diagrams and probability diagrams to classify mGFR<45 mL/min/1.73 m2 were compared. The overall results of BIS1CR/CKD-EPICR/FASCR/LMRCR were as follows: median bias, 1.7/3.6/0.6/-0.7 mL/min/1.73 m2; IQR, 11.6/12.3/11.1/10.5 mL/min/1.73 m2; and P30, 77.5%/76.4%/80.9%/83.5% (significantly higher for LMR, p<0.001). Substandard P30 (<75%) was noted for all equations at mGFR<30 mL/min/1.73 m2, and at body mass index values <20 and ≥35 kg/m2. LMRCR had the most stable performance across mGFR subgroups. Only LMRCR and FASCR had a relatively constant small bias across eGFR levels. Probability diagrams exhibited wide eGFR intervals for all equations where mGFR<45 could not be confidently ruled in or out. Adding cystatin C improved P30 accuracy to 85.7/86.8/85.7/88.7 for BIS2CR+CYS/CKD-EPICR+CYS/FASCR+CYS/MEANLMR+CAPA. LMRCR and FASCR seem to be attractive alternatives to CKD-EPICR in estimating GFR by creatinine-based equations in older Europeans. Addition of cystatin C leads to important improvement in estimation performance.
  •  
3.
  •  
4.
  •  
5.
  • Delanaye, Pierre, et al. (författare)
  • Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research : A review. Part 1: How to measure glomerular filtration rate with iohexol?
  • 2016
  • Ingår i: Clinical Kidney Journal. - : Oxford University Press (OUP). - 2048-8505 .- 2048-8513. ; 9:5, s. 682-699
  • Forskningsöversikt (refereegranskat)abstract
    • While there is general agreement on the necessity tomeasure glomerular filtration rate (GFR) inmany clinical situations, there is less agreement on the bestmethod to achieve this purpose. As the gold standardmethod for GFR determination, urinary (or renal) clearance of inulin, fades into the background due to inconvenience and high cost, a diversity of filtrationmarkers and protocols compete to replace it. In this review, we suggest that iohexol, a non-ionic contrast agent, is most suited to replace inulin as the marker of choice for GFR determination. Iohexol comes very close to fulfilling all requirements for an ideal GFRmarker in terms of low extra-renal excretion, low protein binding and in being neither secreted nor reabsorbed by the kidney. In addition, iohexol is virtually non-Toxic and carries a low cost. As iohexol is stable in plasma, administration and sample analysis can be separated in both space and time, allowing access to GFR determination across different settings. An external proficiency programme operated by Equalis AB, Sweden, exists for iohexol, facilitating interlaboratory comparison of results. Plasma clearance measurement is the protocol of choice as it combines a reliable GFR determination with convenience for the patient. Single-sample protocols dominate, butmultiple-sample protocolsmay bemore accurate in specific situations. In lowGFRs one ormore late samples should be included to improve accuracy. In patients with large oedema or ascites, urinary clearance protocols should be employed. In conclusion, plasma clearance of iohexol may well be the best candidate for a common GFR determination method.
  •  
6.
  • Delanaye, Pierre, et al. (författare)
  • Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research : A review. Part 2: Why to measure glomerular filtration rate with iohexol?
  • 2016
  • Ingår i: Clinical Kidney Journal. - : Oxford University Press (OUP). - 2048-8505 .- 2048-8513. ; 9:5, s. 700-704
  • Forskningsöversikt (refereegranskat)abstract
    • A reliable assessment of glomerular filtration rate (GFR) is of paramount importance in clinical practice as well as epidemiological and clinical research settings. It is recommended by Kidney Disease: Improving Global Outcomes guidelines in specific populations (anorectic, cirrhotic, obese, renal and non-renal transplant patients) where estimation equations are unreliable. Measured GFR is the only valuable test to confirm or confute the status of chronic kidney disease (CKD), to evaluate the slope of renal function decay over time, to assess the suitability of living kidney donors and for dosing of potentially toxic medication with a narrowtherapeutic index. Abnormally elevated GFR or hyperfiltration in patients with diabetes or obesity can be correctly diagnosed only by measuring GFR. GFR measurement contributes to assessing the true CKD prevalence rate, avoiding discrepancies due to GFR estimation with different equations. Using measured GFR, successfully accomplished in large epidemiological studies, is the onlyway to study the potential link between decreased renal function and cardiovascular or total mortality, being sure that this association is not due to confounders, i.e. non-GFR determinants of biomarkers. In clinical research, it has been shown that measured GFR (or measured GFR slope) as a secondary endpoint as compared with estimated GFR detected subtle treatment effects and obtained these results with a comparatively smaller sample size than trials choosing estimated GFR. Measuring GFR by iohexol has several advantages: simplicity, low cost, stability and low interlaboratory variation. Iohexol plasma clearance represents the best chance for implementing a standardized GFR measurement protocol applicable worldwide both in clinical practice and in research.
  •  
7.
  • Grubb, Anders, et al. (författare)
  • Reduction in glomerular pore size is not restricted to pregnant women. Evidence for a new syndrome: 'Shrunken pore syndrome'.
  • 2015
  • Ingår i: Scandinavian Journal of Clinical & Laboratory Investigation. - : Informa UK Limited. - 1502-7686 .- 0036-5513. ; 75:4, s. 333-340
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma levels of cystatin C, β2-microglobulin, beta-trace protein, retinol binding protein (RBP) and creatinine were determined in plasma samples from 111 randomly selected patients with eGFRcystatin C ≤ 60% of eGFRcreatinine and from 55 control patients with 0.9eGFRcreatinine ≤ eGFRcystatin C ≤ 1.1eGFRcreatinine (eGFRcystatin C ≈ eGFRcreatinine). The concentration ratios of cystatin C/creatinine, β2-microglobulin/creatinine, beta-trace protein/creatinine and RBP/creatinine were significantly higher in patients with eGFRcystatin C ≤ 60% of eGFRcreatinine than in patients with eGFRcystatin C ≈ eGFRcreatinine. When the patients were divided into three groups with different estimated GFR intervals (≤ 40, 40-60 and ≥ 60 mL/min/1.73m(2)) the concentration ratios of cystatin C/creatinine, β2-microglobulin/creatinine, and beta-trace protein/creatinine were significantly higher in patients with eGFRcystatin C ≤ 60% of eGFRcreatinine than in patients with eGFRcystatin C ≈ eGFRcreatinine for all GFR intervals. Similar results were obtained when the population without pregnant women was studied as well as the subpopulations of men or of non-pregnant women. Populations of pre-eclamptic women and pregnant women in the third trimester display similar results. Since the production of these four proteins with sizes similar to that of cystatin C is not co-regulated, the most likely explanation for the simultaneous increase of their creatinine-ratios in patients with eGFRcystatin C ≤ 60% of eGFRcreatinine is that their elimination by glomerular filtration is decreased. We suggest that this is due to a reduction in pore diameter of the glomerular membrane and propose the designation 'Shrunken pore syndrome' for this pathophysiological state.
  •  
8.
  • Nordin, Gunnar, et al. (författare)
  • Accuracy of determination of the glomerular filtration marker iohexol by European laboratories as monitored by external quality assessment
  • 2019
  • Ingår i: Clinical Chemistry and Laboratory Medicine. - : Walter de Gruyter. - 1434-6621 .- 1437-4331. ; 57:7, s. 1006-1011
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Glomerular filtration is the most important kidney function. The most accurate glomerular filtration rate (GFR) estimates are based on the clearance of exogenous filtration markers. Of these, iohexol is the only exogenous marker that is included in an external quality assessment (EQA) scheme. The aim of the present study was to evaluate the performance of the European laboratories participating in Equalis' EQA scheme for iohexol. Methods Weighed amounts of iohexol (Omnipaque) were added to plasma samples and distributed to laboratories participating in the EQA scheme for iohexol. All laboratories performed the assays in a blinded fashion. Results The number of participating laboratories varied between 27 and 34 during the study period. Iohexol was determined by HPLC in 77% of the laboratories and by UPLC/MS/MS methods in 15% of the laboratories. The mean interlaboratory coefficient of variation was 4.7% for the HPLC methods and 6.4% for the UPLC/MS/MS methods. The mean bias between calculated and measured iohexol values was -1.3 mg/L (95% confidence interval ±0.3) during the first part of the study period and 0.1 mg/L (±0.3) during the later part. Conclusions The low interlaboratory variation demonstrates that iohexol can be measured reliably by many laboratories and supports the use of iohexol as a GFR marker when there is a need for high quality GFR measurements.
  •  
9.
  • Nyman, Ulf, et al. (författare)
  • Estimating GFR prior to contrast medium examinations-what the radiologist needs to know!
  • 2016
  • Ingår i: European Radiology. - : Springer Science and Business Media LLC. - 0938-7994 .- 1432-1084. ; 26:2, s. 425-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Creatinine-based equations to estimate glomerular filtration rate (GFR) are increasingly used in radiological practice and in studies on contrast medium-induced acute kidney injury (CIAKI). Their use is recommended in guidelines and contrast medium textbooks to identify patients at risk of CIAKI or nephrogenic systemic fibrosis. There is also an increased interest in cystatin C-based equations. Adopting GFR equations requires local creatinine and cystatin C assay calibrations to equal those used in developing the equations to avoid overestimation or underestimation of renal function. Methods should preferably be traceable to international standards, and assay traceability should be defined in CIAKI studies. Absolute GFR (mL/min) should be used when dosing contrast media and relating the dose to CIAKI instead of commonly used relative GFR (mL/min/1.73 m(2)) estimates. Accuracy of creatinine and cystatin C equations (percentage of GFR estimates within 30 % of measured GFR) ranges between 75 % and 85 %. Equations combining creatinine and cystatin C may reach 90 %, an accuracy similar to clearance methods (used as a reference test when developing and validating equations) when compared to the gold standard, renal clearance of inulin. The local laboratory or nephrology experts should be consulted in matters of method calibration and choice of GFR equation. Key Points • Traceability of creatinine/cystatin C assays used in GFR equations must be defined. • Absolute, not relative, GFR should be used when dosing contrast media. • Consult the local laboratory or nephrologist to choose the proper GFR equation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy