SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bäck Sven Å J.) "

Sökning: WFRF:(Bäck Sven Å J.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ceberg, Sofie, et al. (författare)
  • Radiotherapy delivery during motion
  • 2010
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper discusses the 3D dosimetric consequences of radiotherapy delivery during two kinds of motion, (i) the respiratory motion by the patient and (ii) the motion by the gantry while rotating around the patient. Respiratory motion primarily compromises treatments in the thorax and abdomen regions. Several strategies to reduce respiratory motion effects have been developed or are under development. The organ motion could for instance be measured and incorporated in the treatment planning, or adapted to by using respiratory gating and tumour-tracking delivery techniques. Gantry motion is involved in various forms of intensity-modulated arc-therapy techniques. The purpose is to increase the modulation by simultaneously varying the MLC positions, the rotation speed of the gantry, and the dose rate during the treatment. The advantage of these techniques is the increased possibility to deliver a high absorbed dose to the target volume while minimizing the dose to normal tissues. However, the dosimetric uncertainties associated with motion, small fields and steep dose gradients, has to be evaluated in detail, and this requires adequate true 3D dose-verification tools.
  •  
2.
  • Ceberg, Sofie, et al. (författare)
  • Tumor-tracking radiotherapy of moving targets; verification using 3D polymer gel, 2D ion-chamber array and biplanar diode array
  • 2010
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 250:1, s. 235-239
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to carry out a dosimetric verification of a dynamic multileaf collimator (DMLC)-based tumor-tracking delivery during respiratory-like motion. The advantage of tumor-tracking radiation delivery is the ability to allow a tighter margin around the target by continuously following and adapting the dose delivery to its motion. However, there are geometric and dosimetric uncertainties associated with beam delivery system constraints and output variations, and several investigations have to be accomplished before a clinical integration of this tracking technique. Two types of delivery were investigated in this study I) a single beam perpendicular to a target with a one dimensional motion parallel to the MLC moving direction, and II) an intensity modulated arc delivery (RapidArc®) with a target motion diagonal to the MLC moving direction. The feasibility study (I) was made using an 2D ionisation chamber array and a true 3D polymer gel. The arc delivery (II) was verified using polymer gel and a biplanar diode array. Good agreement in absorbed dose was found between delivery to a static target and to a moving target with DMLC tracking using all three detector systems. However, due to the limited spatial resolution of the 2D array a detailed comparison was not possible. The RapidArc® plan delivery was successfully verified using the biplanar diode array and true 3D polymer gel, and both detector systems could verify that the DMLC-based tumor-tracking delivery system has a very good ability to account for respiratory target motion.
  •  
3.
  • Gjaldbæk, Bolette W., et al. (författare)
  • Long-term toxicity and efficacy of FLASH radiotherapy in dogs with superficial malignant tumors
  • 2024
  • Ingår i: Frontiers in Oncology. - 2234-943X. ; 14, s. 01-09
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: FLASH radiotherapy (RT) has emerged as a promising modality, demonstrating both a normal tissue sparing effect and anticancer efficacy. We have previously reported on the safety and efficacy of single fraction FLASH RT in the treatment of oral tumors in canine cancer patients, showing tumor response but also a risk of radiation-induced severe late adverse effects (osteoradionecrosis) for doses ≥35 Gy. Accordingly, the objective in this study was to investigate if single fraction high dose FLASH RT is safe for treating non-oral tumors. Methods: Privately-owned dogs with superficial tumors or microscopic residual disease were included. Treatment was generally delivered as a single fraction of 15-35 Gy 10 MeV electron FLASH RT, although two dogs were re-irradiated at a later timepoint. Follow-up visits were conducted up to 12 months post-treatment to evaluate treatment efficiency and adverse effects. Results: Fourteen dogs with 16 tumors were included, of which nine tumors were treated for gross disease whilst seven tumors were treated post-surgery for microscopic residual disease. Four treatment sites treated with 35 Gy had ulceration post irradiation, which was graded as severe adverse effect. Only mild adverse effects were observed for the remaining treatment sites. None of the patients with microscopic disease experienced recurrence (0/7), and all patients with macroscopic disease showed either a complete (5/9) or a partial response (4/9). Five dogs were euthanized due to clinical disease progression. Discussion: Our study demonstrates that single fraction high dose FLASH RT is generally safe, with few severe adverse effects, particularly in areas less susceptible to radiation-induced damage. In addition, our study indicates that FLASH has anti-tumor efficacy in a clinical setting. No osteoradionecrosis was observed in this study, although other types of high-grade adverse effects including ulcer-formations were observed for the highest delivered dose (35 Gy). Overall, we conclude that osteoradionecrosis following single fraction, high dose FLASH does not appear to be a general problem for non-oral tumor locations. Also, as has been shown previously for oral tumors, 30 Gy appeared to be the maximum safe dose to deliver with single fraction FLASH RT.
  •  
4.
  • Haraldsson, André, et al. (författare)
  • A Helical tomotherapy as a robust low-dose treatment alternative for total skin irradiation
  • 2019
  • Ingår i: Journal of Applied Clinical Medical Physics. - : Wiley. - 1526-9914. ; 20:5, s. 44-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Mycosis fungoides is a disease with manifestation of the skin that has traditionally been treated with electron therapy. In this paper, we present a method of treating the entire skin with megavoltage photons using helical tomotherapy (HT), verified through a phantom study and clinical dosimetric data from our first two treated patients. A whole body phantom was fitted with a wetsuit as bolus, and scanned with computer tomography. We accounted for variations in daily setup using virtual bolus in the treatment plan optimization. Positioning robustness was tested by moving the phantom, and recalculating the dose at different positions. Patient treatments were verified with in vivo film dosimetry and dose reconstruction from daily imaging. Reconstruction of the actual delivered dose to the patients showed similar target dose as the robustness test of the phantom shifted 10 mm in all directions, indicating an appropriate approximation of the anticipated setup variation. In vivo film measurements agreed well with the calculated dose confirming the choice of both virtual and physical bolus parameters. Despite the complexity of the treatment, HT was shown to be a robust and feasible technique for total skin irradiation. We believe that this technique can provide a viable option for Tomotherapy centers without electron beam capability.
  •  
5.
  • Konradsson, Elise, et al. (författare)
  • Evaluation of intensity-modulated electron FLASH radiotherapy in a clinical setting using veterinary cases
  • 2023
  • Ingår i: Medical Physics. - 0094-2405. ; 50:10, s. 6569-6579
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The increased normal tissue tolerance for FLASH radiotherapy (FLASH-RT), as compared to conventional radiotherapy, was first observed in ultra-high dose rate electron beams. Initial clinical trials in companion animals have revealed a high risk of developing osteoradionecrosis following high-dose single-fraction electron FLASH-RT, which may be related to inhomogeneities in the dose distribution. In the current study, we aim to evaluate the possibilities of intensity-modulated electron FLASH-RT in a clinical setting to ensure a homogeneous dose distribution in future veterinary and human clinical trials. Methods: Our beam model in the treatment planning system electronRT (.decimal, LLC, Sanford, FL, USA) was based on a 10-MeV electron beam from a clinical linear accelerator used to treat veterinary patients with FLASH-RT in a clinical setting. In electronRT, the beam can be intensity-modulated using tungsten island blocks in the electron block cutout, and range-modulated using a customized bolus with variable thickness. Modulations were first validated in a heterogeneous phantom by comparing measured and calculated dose distributions. To evaluate the impact of intensity modulation in superficial single-fraction FLASH-RT, a treatment planning study was conducted, including eight canine cancer patient cases with simulated tumors in the head-and-neck region. For each case, treatment plans with and without intensity modulation were created for a uniform bolus and a range-modulating bolus. Treatment plans were evaluated using a target dose homogeneity index (HI), a conformity index (CI), the near-maximum dose outside the target ((Figure presented.)), and the near-minimum dose to the target ((Figure presented.)). Results: By adding intensity modulation to plans with a uniform bolus, the HI could be improved (p = 0.017). The combination of a range-modulating bolus and intensity modulation provided a further significant improvement of the HI as compared to using intensity modulation in combination with a uniform bolus (p = 0.036). The range-modulating bolus also improved the CI compared to using a uniform bolus, both with an open beam (p = 0.046) and with intensity modulation (p = 0.018), as well as increased the (Figure presented.) (p = 0.036 with open beam and p = 0.05 with intensity modulation) and reduced the median (Figure presented.) (not significant). Conclusions: By using intensity-modulated electron FLASH-RT in combination with range-modulating bolus, the target dose homogeneity and conformity in canine patients with simulated tumors in complex areas in the head-and-neck region could be improved. By utilizing this technique, we hope to decrease the dose outside the target volume and avoid hot spots in future clinical electron FLASH-RT studies, thereby reducing the risk of radiation-induced toxicity.
  •  
6.
  • Konradsson, Elise, et al. (författare)
  • Reconfiguring a Plane-Parallel Transmission Ionization Chamber to Extend the Operating Range into the Ultra-High Dose-per-pulse Regime
  • 2024
  • Ingår i: Radiation Research. - 0033-7587. ; 201:3, s. 252-260
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to investigate the feasibility of enhancing the charge collection efficiency (CCE) of a transmission chamber by reconfiguring its design and operation. The goal was to extend the range of dose-per-pulse (DPP) values with no or minimal recombination effects up to the ultra-high dose rate (UHDR) regime. The response of two transmission chambers, with electrode distance of 1 mm and 0.6 mm, respectively, was investigated as a function of applied voltage. The chambers were mounted one-by-one in the electron applicator of a 10 MeV FLASH-modified clinical linear accelerator. The chamber signals were measured as a function of nominal DPP, which was determined at the depth of dose maximum using EBT-XD film in solid water and ranged from 0.6 mGy per pulse to 0.9 Gy per pulse, for both the standard voltage of 320 V and the highest possible safe voltage of 1,200 V. The CCE was calculated and fitted with an empirical logistic function that incorporated the electrode distance and the chamber voltage. The CCE decreased with increased DPP. The CCE at the highest achievable DPP was 24% (36%) at 320 V and 51% (82%) at 1,200 V, for chambers with 1 mm (0.6 mm) electrode distance. For the combination of 1,200 V- and 0.6-mm electrode distance, the CCE was»100% for average dose rate up to 70 Gy/s at the depth of dose maximum in the phantom at a source-to-surface distance of 100 cm. Our findings indicate that minor modifications to a plane-parallel transmission chamber can substantially enhance the CCE and extending the chamber's operating range to the UHDR regime. This supports the potential of using transmission chamber-based monitoring solutions for UHDR beams, which could facilitate the delivery of UHDR treatments using an approach similar to conventional clinical delivery.
  •  
7.
  • Kügele, Malin, et al. (författare)
  • Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy
  • 2019
  • Ingår i: Journal of Applied Clinical Medical Physics. - : Wiley. - 1526-9914. ; , s. 61-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose of the study was to investigate if surface guided radiotherapy (SGRT) can decrease setup deviations for tangential and locoregional breast cancer patients compared to conventional laser-based setup (LBS). Materials and Methods: Both tangential (63 patients) and locoregional (76 patients) breast cancer patients were enrolled in this study. For LBS, the patients were positioned by aligning skin markers to the room lasers. For the surface based setup (SBS), an optical surface scanning system was used for daily setup using both single and three camera systems. To compare the two setup methods, the patient position was evaluated using verification imaging (field images or orthogonal images). Results: For both tangential and locoregional treatments, SBS decreased the setup deviation significantly compared to LBS (P < 0.01). For patients receiving tangential treatment, 95% of the treatment sessions were within the clinical tolerance of ≤ 4 mm in any direction (lateral, longitudinal or vertical) using SBS, compared to 84% for LBS. Corresponding values for patients receiving locoregional treatment were 70% and 54% for SBS and LBS, respectively. No significant difference was observed comparing the setup result using a single camera system or a three camera system. Conclusions: Conventional laser-based setup can with advantage be replaced by surface based setup. Daily SGRT improves patient setup without additional imaging dose to breast cancer patients regardless if a single or three camera system was used.
  •  
8.
  • Mannerberg, Annika, et al. (författare)
  • Faster and more accurate patient positioning with surface guided radiotherapy for ultra-hypofractionated prostate cancer patients
  • 2021
  • Ingår i: Technical Innovations and Patient Support in Radiation Oncology. - : Elsevier BV. - 2405-6324. ; 19, s. 41-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The aim of this study was to evaluate if surface guided radiotherapy (SGRT) can decrease patient positioning time for localized prostate cancer patients compared to the conventional 3-point localization setup method. The patient setup accuracy was also compared between the two setup methods. Materials and methods: A total of 40 localized prostate cancer patients were enrolled in this study, where 20 patients were positioned with surface imaging (SI) and 20 patients were positioned with 3-point localization. The setup time was obtained from the system log files of the linear accelerator and compared between the two methods. The patient setup was verified with daily orthogonal kV images which were matched based on the implanted gold fiducial markers. Resulting setup deviations between planned and online positions were compared between SI and 3-point localization. Results: Median setup time was 2:50 min and 3:28 min for SI and 3-point localization, respectively (p < 0.001). The median vector offset was 4.7 mm (range: 0–10.4 mm) for SI and 5.2 mm for 3-point localization (range: 0.41–17.3 mm) (p = 0.01). Median setup deviation in the individual translations for SI and 3-point localization respectively was: 1.1 mm and 1.9 mm in lateral direction (p = 0.02), 1.8 and 1.6 mm in the longitudinal direction (p = 0.41) and 2.2 mm and 2.6 mm in the vertical direction (p = 0.04). Conclusions: Using SGRT for positioning of prostate cancer patients provided a faster and more accurate patient positioning compared to the conventional 3-point localization setup.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy