SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bågenholm Ralph) "

Sökning: WFRF:(Bågenholm Ralph)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Löfgren, Nils, 1969, et al. (författare)
  • Spectral distance for ARMA models applied to electroencephalogram for early detection of hypoxia
  • 2006
  • Ingår i: Journal of Neural Engineering. - : IOP Publishing. - 1741-2560 .- 1741-2552. ; 3:3, s. 227-34
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel measure of spectral distance is presented, which is inspired by the prediction residual parameter presented by Itakura in 1975, but derived from frequency domain data and extended to include autoregressive moving average (ARMA) models. This new algorithm is applied to electroencephalogram (EEG) data from newborn piglets exposed to hypoxia for the purpose of early detection of hypoxia. The performance is evaluated using parameters relevant for potential clinical use, and is found to outperform the Itakura distance, which has proved to be useful for this application. Additionally, we compare the performance with various algorithms previously used for the detection of hypoxia from EEG. Our results based on EEG from newborn piglets show that some detector statistics divert significantly from a reference period less than 2 min after the start of general hypoxia. Among these successful detectors, the proposed spectral distance is the only spectral-based parameter. It therefore appears that spectral changes due to hypoxia are best described by use of an ARMA- model-based spectral estimate, but the drawback of the presented method is high computational effort.
  •  
7.
  •  
8.
  •  
9.
  • Seoane Martinez, Fernando, 1976, et al. (författare)
  • Spectroscopy study of the dynamics of the transencephalic electrical impedance in the perinatal brain during hypoxia
  • 2005
  • Ingår i: Physiological Measurement. - : IOP Publishing. - 0967-3334 .- 1361-6579. ; 26:5, s. 849-863
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia/ischaemia is the most common cause of brain damage in neonates. Thousands of newborn children suffer from perinatal asphyxia every year. The cells go through a response mechanism during hypoxia/ischaemia, to maintain the cellular viability and, as a response to the hypoxic/ischaemic insult, the composition and the structure of the cellular environment are altered. The alterations in the ionic concentration of the intra- and extracellular and the consequent cytotoxic oedema, cell swelling, modify the electrical properties of the constituted tissue. The changes produced can be easily measured using electrical impedance instrumentation. In this paper, we report the results from an impedance spectroscopy study on the effects of the hypoxia on the perinatal brain. The transencephalic impedance, both resistance and reactance, was measured in newborn piglets using the four-electrode method in the frequency range from 20 kHz to 750 kHz and the experimental results were compared with numerical results from a simulation of a suspension of cells during cell swelling. The experimental results make clear the frequency dependence of the bioelectrical impedance, confirm that the variation of resistance is more sensitive at low than at high frequencies and show that the reactance changes substantially during hypoxia. The resemblance between the experimental and numerical results proves the validity of modelling tissue as a suspension of cells and confirms the importance of the cellular oedema process in the alterations of the electrical properties of biological tissue. The study of the effects of hypoxia/ischaemia in the bioelectrical properties of tissue may lead to the development of useful clinical tools based on the application of bioelectrical impedance technology.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy