SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Børja Isabella) "

Sökning: WFRF:(Børja Isabella)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Børja, Isabella, et al. (författare)
  • Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway
  • 2008
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 28:5, s. 773-784
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1–2 and 2–5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m–2, SLR from 13.4 to 19.8 m g–1, RLD from 980 to 11,650 m m–3 and RSA from 2.4 to 35.4 m2 m–3. Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0–5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.
  •  
2.
  •  
3.
  •  
4.
  • Rosner, Sabine, et al. (författare)
  • Hydraulic and mechanical dysfunction of Norway spruce sapwood due to extreme summer drought in Scandinavia
  • 2018
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 409, s. 527-540
  • Tidskriftsartikel (refereegranskat)abstract
    • Projected climate change scenarios such as frequently occurring dry summer spells are an enormous threat to the health of boreal conifer forests. We identified visible features indicating wood with tracheids predisposed for hydraulic and mechanical dysfunction in Norway spruce, suggest why this is formed during severe summer drought and hypothesised on mechanism that would cause tracheid collapse and stem cracks. Trees from southern Sweden that showed signs of severe reaction to drought, i.e. stem cracks along the trunk, were compared to healthy, undamaged trees. Rings investigated included those formed in 2006, a year with an extremely dry summer season in the study region. In southern Norway, we investigated trees with and without drought-induced top dieback symptoms. We analysed anatomical features such as tracheid lumen diameter, thickness of cell wall and its various layers (S1, S2 and S3), applied Raman imaging in order to get information on the lignin distribution in the cell wall and the compound middle lamellae and performed hydraulic flow and shrinkage experiments. Although tracheids in annual rings with signs of collapse had higher tangential lumen diameters than those in “normal” annual rings, we conclude that collapse of tracheid walls depends mainly on wall thickness, which is genetically determined to a large extent. Spruce trees that produce earlywood with extremely thin cell walls can develop wall collapse and internal cracks under the impact of dry spells. We also present a new diagnostic tool for detecting individuals that are prone to cell wall collapse and stem cracks: Lucid bands, i.e. bands in the fresh sapwood with very thin cell walls and inhomogeneous lignin distribution in the S-layers and the compound middle lamellae that lost their hydraulic function due to periods of severe summer drought. The detection of genotypes with lucid bands could be useful for an early selection against individuals that are prone to stem cracks under the impact of severe summer drought, and also for early downgrading of logs prone to cracking during industrial kiln drying.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy