SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Büker Patrick) "

Sökning: WFRF:(Büker Patrick)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Emberson, Lisa D., et al. (författare)
  • Ozone effects on crops and consideration in crop models
  • 2018
  • Ingår i: European Journal of Agronomy. - : Elsevier BV. - 1161-0301. ; 100:Special Issue: SI, s. 19-34
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors We review current knowledge of the processes by which ozone will cause injury and damage to crop plants. We do this both through an understanding of the limitations to ozone uptake (i.e. ozone being transferred from some height in the atmosphere to the leaf boundary layer and subsequent uptake via the stomata) as well as through the internal plant processes that will result in the absorbed ozone dose causing damage and/or injury. We consider these processes across a range of scales by which ozone impacts plants, from cellular metabolism influencing leaf level physiology up to whole canopy and root system processes and feedbacks. We explore how these impacts affect leaf level photosynthesis and senescence (and associated carbon assimilation) as well as whole canopy resource acquisition (e.g. water and nutrients) and ultimately crop growth and yield. We consider these processes from the viewpoint of developing crop growth models capable of incorporating key ozone impact processes within modelling structures that assess crop growth under a variety of different abiotic stresses. These models would provide a dynamic assessment of the impact of ozone within the context of other key variables considered important in determining crop growth and yield. We consider the ability to achieve such modelling through an assessment of the different types of crop model currently available (e.g. empirical, radiation use efficiency, and photosynthesis based crop growth models). Finally, we show how international activities such as the AgMIP (Agricultural Modelling and Improvement Intercomparison Project) could see crop growth modellers collaborate to assess the capabilities of different crop models to simulate the effects of ozone and other stresses. The development of robust crop growth models capable of including ozone effects would substantially improve future national, regional and global risk assessments that aim to assess the role that ozone might play under future climatic conditions in limiting food supply.
  •  
2.
  • Feng, Zhaozhong, et al. (författare)
  • A unifying explanation for variation in ozone sensitivity among woody plants
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:1, s. 78-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration-based to a more physiologically relevant stomatal flux-based index, large-scale ozone risk assessment is still complicated by a large and unexplained variation in ozone sensitivity among tree species. Here, we explored whether the variation in ozone sensitivity among woody species can be linked to interspecific variation in leaf morphology. We found that ozone tolerance at the leaf level was closely linked to leaf dry mass per unit leaf area (LMA) and that whole-tree biomass reductions were more strongly related to stomatal flux per unit leaf mass (r 2 =0.56) than to stomatal flux per unit leaf area (r 2 =0.42). Furthermore, the interspecific variation in slopes of ozone flux–response relationships was considerably lower when expressed on a leaf mass basis (coefficient of variation, CV=36%) than when expressed on a leaf area basis (CV=66%), and relationships for broadleaf and needle-leaf species converged when using the mass-based index. These results show that much of the variation in ozone sensitivity among woody plants can be explained by interspecific variation in LMA and that large-scale ozone impact assessment could be greatly improved by considering this well-known and easily measured leaf trait.
  •  
3.
  • Mills, Gina, et al. (författare)
  • Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990 - 2006) in relation to AOT40 - and flux-based risk maps
  • 2010
  • Ingår i: Global Change Biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 17:1, s. 592-613
  • Tidskriftsartikel (refereegranskat)abstract
    • Records of effects of ambient ozone pollution on vegetation have been compiled for Europe for the years 1990–2006. Sources include scientific papers, conference proceedings, reports to research funders, records of confirmed ozone injury symptoms and an international biomonitoring experiment coordinated by the ICP Vegetation. The latter involved ozone-sensitive (NC-S) and ozone-resistant (NC-R) biotypes of white clover (Trifolium repens L.) grown according to a common protocol and monitored for ozone injury and biomass differences in 17 European countries, from 1996 to 2006. Effects were separated into visible injury or growth/yield reduction. Of the 644 records of visible injury, 39% were for crops (27 species), 38.1% were for (semi-) natural vegetation (95 species) and 22.9% were for shrubs (49 species). Owing to inconsistencies in reporting effort from year to year it was not possible to determine geographical or temporal trends in the data. Nevertheless, this study has shown effects in ambient air in 18 European countries from Sweden in the north to Greece in the south. These effects data were superimposed on AOT40 (accumulated ozone concentrations over 40 ppb) and POD3gen (modelled accumulated stomatal flux over a threshold of 3 nmol m−2 s−1) maps generated by the EMEP Eulerian model (50 km × 50 km grid) that were parameterized for a generic crop based on wheat and NC-S/NC-R white clover. Many effects were found in areas where the AOT40 (crops) was below the critical level of 3 ppm h. In contrast, the majority of effects were detected in grid squares where POD3gen (crops) were in the mid-high range (>12 mmol m−2). Overall, maps based on POD3gen provided better fit to the effects data than those based on AOT40, with the POD3gen model for clover fitting the clover effects data better than that for a generic crop.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy