SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(B. Erdal Nejla) "

Sökning: WFRF:(B. Erdal Nejla)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • B. Erdal, Nejla, et al. (författare)
  • Green Strategy to Reduced Nanographene Oxide through Microwave Assisted Transformation of Cellulose
  • 2018
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 6:1, s. 1245-1255
  • Tidskriftsartikel (refereegranskat)abstract
    • A green strategy for fabrication of biobased reduced nanographene oxide (r-nGO) was developed. Cellulose derived nanographene oxide (nGO) type carbon nanodots were reduced by microwave assisted hydrothermal treatment with superheated water alone or in the presence of caffeic acid (CA), a green reducing agent. The carbon nanodots, r-nGO and r-nGO-CA, obtained through the two different reaction routes without or with the added reducing agent, were characterized by multiple analytical techniques including FTIR, XPS, Raman, XRD, TGA, TEM, AFM, UV-vis, and DLS to confirm and evaluate the efficiency of the reduction reactions. A significant decrease in oxygen content accompanied by increased number of sp2 hybridized functional groups was confirmed in both cases. The synergistic effect of superheated water and reducing agent resulted in the highest C/O ratio and thermal stability, which also supported a more efficient reduction. Interesting optical properties were detected by fluorescence spectroscopy where nGO, r-nGO, and r-nGO-CA all displayed excitation dependent fluorescence behavior. r-nGO-CA and its precursor nGO were evaluated toward osteoblastic cells MG-63 and exhibited nontoxic behavior up to 200 μg mL-1, which gives promise for utilization in biomedical applications.
  •  
2.
  • Yadav, A., et al. (författare)
  • Cellulose-Derived Nanographene Oxide Reinforced Macroporous Scaffolds of High Internal Phase Emulsion-Templated Cross-Linked Poly(ϵ-caprolactone)
  • 2020
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 21:2, s. 589-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose-derived nanographene oxide (nGO)-type carbon dot reinforced porous scaffolds of poly(epsilon-caprolactone) (PCL) were developed as templates from high internal phase emulsions (HIPE). The mechanical strength, structural integrity, and reusability of the scaffolds were enhanced via in situ cross-linking. An oil-in-oil (o/o) HIPE of epsilon-caprolactone monomer (CL) was made for this purpose, and the ring-opening polymerization of a continuous phase comprised of CL, catalyst (Sn(Oct)(2)), and cross-linker (bis(caprolactone-4-yl)) (BCY) was carried out. The functionalization of scaffolds with nGO was assessed along with its role as an effective Pickering stabilizer of the HIPEs. The pore size and porosity of the scaffolds were governed by HIPE morphology, which in turn was controlled by the amount of nGO and the volume fraction of the dispersed phase. The nGO-functionalized scaffolds of cross-linked PCL thus prepared were characterized for their morphological structure, mechanical strength, and oil sorption capacity. Enhanced oil adsorption of nGO-functionalized scaffolds proved them to be of higher potency compared to those made of neat PCL. Superior compressive strength and reusability of scaffolds for oil adsorption up to 40 times while maintaining the structural integrity for >= 25 sorption-desorption cycles added extra value to such scaffolds. The scaffolds also had excellent cell viability as evaluated by MG63 osteoblast-like cells and some bioactivity in the form of calcium phosphate mineralization on the surface of the scaffolds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy