SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baars I) "

Sökning: WFRF:(Baars I)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Kulmala, M., et al. (författare)
  • General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:24, s. 13061-13143
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
  •  
5.
  • Samie, M., et al. (författare)
  • Near wall coherence in wall-bounded flows and implications for flow control
  • 2020
  • Ingår i: International Journal of Heat and Fluid Flow. - : Elsevier B.V.. - 0142-727X .- 1879-2278. ; 86
  • Tidskriftsartikel (refereegranskat)abstract
    • Opposition-control of the energetic cycle of near wall streaks in wall-bounded turbulence, using numerical approaches, has shown promise for drag reduction. For practical implementation, real-time opposition control is only realizable if there is a degree of coherence between the turbulent velocities passing a sensor and the target point within the flow; for practicality, a sensor (and actuator) should be wall-based to avoid parasitic drag. As such, we here inspect the feasibility of real-time control of the near wall cycle, by considering the coherence between a measurable wall-quantity, being the wall-shear stress fluctuations, and the streamwise and wall-normal velocity fluctuations in a turbulent boundary layer. Synchronized spatial and temporal velocity data from two direct numerical simulations and a fine large eddy simulation at Reτ≈590 and 2000 are employed. This study shows that the spectral energy of the streamwise velocity fluctuations that is stochastically incoherent with wall signals is independent of Reynolds number in the near wall region (up to the viscous-scaled wall-normal height z+≈20). Consequently, the streamwise energy-fraction that is stochastically wall-coherent grows with Reynolds number due to the increasing range of energetic large scales. This thus implies that a wall-based control system has the ability to manipulate a larger portion of the total turbulence energy at off-wall locations, at higher Reynolds numbers, while the efficacy of predicting/targeting the small scales of the near wall cycle remains indifferent with varying Reynolds number. Coherence values of 0.55 and 0.4 were found between the streamwise and wall-normal velocity fluctuations at the near wall peak in the energy spectrogram, respectively, and the streamwise fluctuating friction velocity. These coherence values, which are considerably lower than 1 (maximum possible coherence) suggest that a closed-loop drag reduction scheme targeting near wall cycle streaks alone (based on sensed friction velocity fluctuations) will be of limited success in practice.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy