SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baatout Sarah) "

Sökning: WFRF:(Baatout Sarah)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Babini, Gabriele, et al. (författare)
  • A systems radiation biology approach to unravel the role of chronic low-dose-rate gamma-irradiation in inducing premature senescence in endothelial cells
  • 2022
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeThe aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence.Materials and methodsDifferent datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence.ResultsSimultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario.ConclusionsThis study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.
  •  
2.
  • Hall, Janet, et al. (författare)
  • Ionizing radiation biomarkers in epidemiological studies - An update
  • 2017
  • Ingår i: Mutation Research. - : Elsevier BV. - 1383-5742 .- 1388-2139. ; 771, s. 59-84
  • Forskningsöversikt (refereegranskat)abstract
    • Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of < 100 mSv and dose rates of < 10 mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60 mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
  •  
3.
  • Pernot, Eileen, et al. (författare)
  • Ionizing radiation biomarkers for potential use in epidemiological studies
  • 2012
  • Ingår i: Mutation Research. - : Elsevier BV. - 1383-5742 .- 1388-2139. ; 751:2, s. 258-286
  • Forskningsöversikt (refereegranskat)abstract
    • Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100 mSv and/or 0.1 mSv min(-1)) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of potential confounding factors, are also essential.
  •  
4.
  • Rombouts, Charlotte, et al. (författare)
  • Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation
  • 2014
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 90:7, s. 560-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Ionizing radiation has been recognized to increase the risk of cardiovascular diseases (CVD). However, there is no consensus concerning the dose-risk relationship for low radiation doses and a mechanistic understanding of low dose effects is needed. Material and methods: Previously, human umbilical vein endothelial cells (HUVEC) were exposed to chronic low dose rate radiation (1.4 and 4.1 mGy/h) during one, three and six weeks which resulted in premature senescence in cells exposed to 4.1 mGy/h. To gain more insight into the underlying signaling pathways, we analyzed gene expression changes in these cells using microarray technology. The obtained data were analyzed in a dual approach, combining single gene expression analysis and Gene Set Enrichment Analysis. Results: An early stress response was observed after one week of exposure to 4.1 mGy/h which was replaced by a more inflammation-related expression profile after three weeks and onwards. This early stress response may trigger the radiation-induced premature senescence previously observed in HUVEC irradiated with 4.1 mGy/h. A dedicated analysis pointed to the involvement of insulin-like growth factor binding protein 5 (IGFBP5) signaling in radiation-induced premature senescence. Conclusion: Our findings motivate further research on the shape of the dose-response and the dose rate effect for radiation-induced vascular senescence.
  •  
5.
  • Salomaa, Sisko, et al. (författare)
  • State of the art in research into the risk of low dose radiation exposure-findings of the fourth MELODI workshop
  • 2013
  • Ingår i: Journal of Radiological Protection. - : IOP Publishing. - 0952-4746 .- 1361-6498. ; 33:3, s. 589-603
  • Tidskriftsartikel (refereegranskat)abstract
    • The fourth workshop of the Multidisciplinary European Low Dose Initiative (MELODI) was organised by STUK-Radiation and Nuclear Safety Authority of Finland. It took place from 12 to 14 September 2012 in Helsinki, Finland. The meeting was attended by 179 scientists and professionals engaged in radiation research and radiation protection. We summarise the major scientific findings of the workshop and the recommendations for updating the MELODI Strategic Research Agenda and Road Map for future low dose research activities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy