SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bacic S) "

Sökning: WFRF:(Bacic S)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Douchkov, D., et al. (författare)
  • The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus
  • 2016
  • Ingår i: New Phytologist. - : Blackwell Publishing. - 0028-646X .- 1469-8137. ; 212:2, s. 421-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their host's cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively.
  •  
8.
  • Ford, Kristina L., et al. (författare)
  • Comparative "Golgi" Proteome Study of Lolium multiflorum and Populus trichocarpa
  • 2016
  • Ingår i: PROTEOMES. - : MDPI AG. - 2227-7382. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Golgi apparatus (GA) is a crucial organelle in the biosynthesis of non-cellulosic polysaccharides, glycoproteins and proteoglycans that are primarily destined for secretion to the cell surface (plasma membrane, cell wall and apoplast). Only a small proportion of the proteins involved in these processes have been identified in plants, with the majority of their functions still unknown. The availability of a GA proteome would greatly assist plant biochemists, cell and molecular biologists in determining the precise function of the cell wall-related proteins. There has been some progress towards defining the GA proteome in the model plant system Arabidopsis thaliana, yet in commercially important species, such as either the cereals or woody species there has been relatively less progress. In this study, we applied discontinuous sucrose gradient centrifugation to partially enrich GA from suspension cell cultures (SCCs) and combined this with stable isotope labelling (iTRAQ) to determine protein sub-cellular locations. Results from a representative grass species, Italian ryegrass (Lolium multiflorum) and a dicot species, black cottonwood (Populus trichocarpa) are compared. The results confirm that membrane fractionation approaches that provide effective GA-enriched fractions for proteomic analyses in Arabidopsis are much less effective in the species examined here and highlight the complexity of the GA, both within and between species.
  •  
9.
  • Roberts, Alison W., et al. (författare)
  • Functional Characterization of a Glycosyltransferase from the Moss Physcomitrella patens Involved in the Biosynthesis of a Novel Cell Wall Arabinoglucan
  • 2018
  • Ingår i: The Plant Cell. - : American Society of Plant Biologists. - 1040-4651 .- 1532-298X. ; 30:6, s. 1293-1308
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed-linkage (1,3;1,4)-β-glucan (MLG), an abundant cell wall polysaccharide in the Poaceae, has been detected in ascomycetes, algae, and seedless vascular plants, but not in eudicots. Although MLG has not been reported in bryophytes, a predicted glycosyltransferase from the moss Physcomitrella patens (Pp3c12_24670) is similar to a bona fide ascomycete MLG synthase. We tested whether Pp3c12_24670 encodes an MLG synthase by expressing it in wild tobacco (Nicotiana benthamiana) and testing for release of diagnostic oligosaccharides from the cell walls by either lichenase or (1,4)-β-glucan endohydrolase. Lichenase, an MLG-specific endohydrolase, showed no activity against cell walls from transformed N. benthamiana, but (1,4)-β-glucan endohydrolase released oligosaccharides that were distinct from oligosaccharides released from MLG by this enzyme. Further analysis revealed that these oligosaccharides were derived from a novel unbranched, unsubstituted arabinoglucan (AGlc) polysaccharide. We identified sequences similar to the P. patens AGlc synthase from algae, bryophytes, lycophytes, and monilophytes, raising the possibility that other early divergent plants synthesize AGlc. Similarity of P. patens AGlc synthase to MLG synthases from ascomycetes, but not those from Poaceae, suggests that AGlc and MLG have a common evolutionary history that includes loss in seed plants, followed by a more recent independent origin of MLG within the monocots.
  •  
10.
  • Tsagarakis, Konstantinos P., et al. (författare)
  • A review of the legal framework in shallow geothermal energy in selected European countries : Need for guidelines
  • 2020
  • Ingår i: Renewable Energy. - : Elsevier BV. - 0960-1481. ; 147:Part 2, s. 2556-2571
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past years, the installations of Shallow Geothermal Energy (SGE) systems are increasing throughout Europe, and it is indicating that a specific and detailed legal framework is necessary. Towards this direction, this paper consists of an overview of legislation issues on SGE at European level, based on concise reviews from fourteen countries, i.e., Croatia, Cyprus, France, Greece, Italy, Latvia, Lithuania, Poland, Portugal, Serbia, Slovenia, Spain, Sweden, and Turkey. Said reviews discuss key national legislation as well as experts’ experience in the procedure of SGE integration. Legal and technical issues are also critically discussed for all involved countries, both individually and collectively. Findings show that high diversity exists on legislation provisions as well as on regulations, standards, and institutional support amongst European countries. The latter acts as an effective barrier for the further development of the SGE market; therefore indicating the need for a common approach. Increase of awareness, need for standardization, improvement of legal framework, and administration procedures and permitting, are essential steps in moving forward and supporting the effectiveness of design, construction, maintenance, and operation of SGE systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy