SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Back R) "

Search: WFRF:(Back R)

  • Result 1-10 of 102
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Singh, B., et al. (author)
  • Study of doubly strange systems using stored antiprotons
  • 2016
  • In: Nuclear Physics A. - : Elsevier. - 0375-9474 .- 1873-1554. ; 954, s. 323-340
  • Journal article (peer-reviewed)abstract
    • Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Xi(-) -atoms will be feasible and even the production of Omega(-) -atoms will be within reach. The latter might open the door to the vertical bar S vertical bar = 3 world in strangeness nuclear physics, by the study of the hadronic Omega(-) -nucleus interaction. For the first time it will be possible to study the behavior of Xi(+) in nuclear systems under well controlled conditions.
  •  
2.
  •  
3.
  • Bécoulet, A., et al. (author)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Journal article (peer-reviewed)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
4.
  •  
5.
  •  
6.
  • Jentschel, M., et al. (author)
  • EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility
  • 2017
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12
  • Journal article (peer-reviewed)abstract
    • In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of gamma-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 10(8) ns(-1)cm(2) at the target position and negligible neutron halo. The targetwas surrounded by an array of eight to ten anti-Compton shielded EXOGAMClover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectorswere arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 x 10(5) Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico-to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of Ba-133, Co-60 and Eu-152 as well as data from the reactions Al-27(n, gamma)Al-28 and Cl-35(n,gamma)Cl-36 in the energy range from 30 keV up to 10MeV.
  •  
7.
  •  
8.
  • Ahdida, C., et al. (author)
  • Sensitivity of the SHiP experiment to Heavy Neutral Leptons
  • 2019
  • In: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :4
  • Journal article (peer-reviewed)abstract
    • Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL's benchmark models and provide a way to calculate the SHiP's sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.
  •  
9.
  • Ahdida, C., et al. (author)
  • The experimental facility for the Search for Hidden Particles at the CERN SPS
  • 2019
  • In: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to O(10) GeV/c(2) in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.
  •  
10.
  • Ahdida, C., et al. (author)
  • Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
  • 2019
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHIP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of O(10(6)). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 102

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view